Bài 2: Hình thang

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khánh Chi

cho tam giác ABC ( AB=AC) ; phân giác BD, CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE. CMR:

a) tứ giác BDCE là hình thang

b) BE=ED=DC

c) bốn điểm A, I, O, J thẳng hàng

giúp mình với tối nay mình đi học rồi:(

Linh Nguyễn
27 tháng 7 2022 lúc 15:26

a) Có \(\widehat{ABC}=\widehat{ACB}\) (vì ΔABC cân)
=> \(\widehat{DBC}=\widehat{ECB}\)
BC chung
=> ΔDBC = ΔECB
=> BE = CD (1)
mà AB = AC
=> \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
=> ED // BC (2)
Từ (1) và (2) => BEDC là hình thang cân
b) Có BE = CD (1)
\(\widehat{EDB}=\widehat{DBC}\) (so le trong)
mà \(\widehat{DBC}=\widehat{EBD}\) (BD là phân giác)
=> \(\widehat{EDB}=\widehat{DBC=}\widehat{EBD}\)
=> ΔBED cân tại E
=> BE = ED (2)
Từ (1) và (2) => BE = CD = ED
c) ΔAED cân tại A có J là trung điểm của ED
=> AJ là tia phân giác của \(\widehat{BAC}\) (1)

ΔABC có O là giao điểm của các đường phân giác \(\widehat{BAC}\) (2)
ΔABC cân tại A có I là trung điểm của BC
=> AI là tia phân giác \(\widehat{BAC}\) (3)
Từ (1) ; (2) và (3) => A, J, O, I thẳng hàng


Các câu hỏi tương tự
an hoàng
Xem chi tiết
Nhi Nguyễn
Xem chi tiết
Trần Lạc Băng
Xem chi tiết
an hoàng
Xem chi tiết
hoang minh nguyen
Xem chi tiết
thanh
Xem chi tiết
Nguyễn Hoàng Mẫn Nghi
Xem chi tiết
Phạm Mỹ Uyên
Xem chi tiết
Huỳnh Nhật Thái
Xem chi tiết
Hai Yen
Xem chi tiết