Cho a,b là các số chẵn. Chứng minh rằng a2 + b2 viết được dưới dạng hiệu hai bình phương của 2 số nguyên
Cho a= \(\sqrt{2}-1\)
a) Viết a2 , a3 dưới dạng \(\sqrt{m}-\sqrt{m-1}\) trong đó m là số tự nhiên .
b*) Chứng minh rằng với mọi số nguyên dương n, số an viết được dưới dạng trên.
Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].
Câu 32. Tìm giá trị lớn nhất của biểu thức:
Câu 33. Tìm giá trị nhỏ nhất của: với x, y, z > 0.
Câu 34. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.
Câu 35. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.
Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:
a) ab và a/b là số vô tỉ.
b) a + b và a/b là số hữu tỉ (a + b ≠ 0)
c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)
Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 38. Cho a, b, c, d > 0. Chứng minh:
Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1
Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
Cho a, b,, c, d là các số nguyên dương thỏa mãn b( a + c) = ac. Chứng minh rằng: a. b + 2( a + c) luôn là hợp số;
b. c + 2a luôn là hợp số.
Chứng minh rằng tồn tại vô số số nguyên dương a sao cho Z=n4+a không là số nguyên tố ∀n ∈ N*
Cho a, b là hai số nguyên sao cho tồn tại hai số nguyên liên tiếp c và d để a - b = a2c - b2d. Chứng minh |a - b| là số chính phương.
Tính tổng các chử số của A, biết rằng*:
\(\sqrt{A}=99...96\) (có 100 chữ số 9 )
Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\ge1\)