\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{49}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\frac{1}{40}.10+\frac{1}{50}.10+\frac{1}{60}.10< S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50.10}\)
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}< S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)
\(\frac{1}{4}+\frac{1}{5}+\frac{3}{20}< \frac{1}{4}+\frac{1}{5}+\frac{1}{6}< S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{1}{3}+\frac{4}{15}+\frac{1}{5}\)
\(\frac{3}{5}< S< \frac{4}{5}\left(đpcm\right)\)
Đúng 0
Bình luận (0)