S=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+...+\(\frac{1}{18^2}\)+\(\frac{1}{19^2}\)
S<\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{17.18}\)+\(\frac{1}{18.19}\)
S<1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{17}\)-\(\frac{1}{18}\)+\(\frac{1}{18}\)-\(\frac{1}{19}\)
S<1-\(\frac{1}{19}\)
\(\Rightarrow\)S<\(\frac{18}{18}\)
Có: \(\frac{1}{2^2}< \frac{1}{1\cdot2}\\ \frac{1}{3^2}< \frac{1}{2\cdot3}\\ \frac{1}{4^2}< \frac{1}{3\cdot4}\\ \frac{1}{5^2}< \frac{1}{4\cdot5}\\...\\ \frac{1}{18^2}< \frac{1}{17\cdot18}\\ \frac{1}{19^2}< \frac{1}{18\cdot19}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{18^2}+\frac{1}{19^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{17\cdot18}+\frac{1}{18\cdot19}\\ \Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{18}+\frac{1}{18}-\frac{1}{19}\\ \Rightarrow S< 1-\frac{1}{19}\\ \Rightarrow S< \frac{18}{19}\)
Vậy \(S< \frac{18}{19}\)