Ta có :
\(S=2^0+2^2+2^4+............+2^{102}\)
\(\Leftrightarrow2^2S=2^2+2^4+..............+2^{102}+2^{104}\)
\(\Leftrightarrow4S-S=\left(2^2+2^4+.........+2^{104}\right)-\left(1+2^2+.........+2^{102}\right)\)
\(\Leftrightarrow3S=2^{104}-1\)
\(\Leftrightarrow S=\dfrac{2^{104}-2}{3}\)
a) \(S=2+2^2+2^4+2^6+...+2^{102}\)
\(\Rightarrow2^2S=2^2\left(2+2^2+2^4+2^6+...+2^{102}\right)\)
\(\Leftrightarrow4S=2^3+2^4+2^6+2^8+...+2^{104}\)
\(\Rightarrow4S-S=3S=\left(2^3+2^4+2^6+2^8+...+2^{104}\right)-\left(2+2^2+2^4+2^6+...+2^{102}\right)\)
\(3S=2^3+2^{104}-2-2^2\)
\(3S=8+2^{104}-2-4=2^{104}-2\)
\(\Rightarrow S=\dfrac{2^{104}-2}{3}=\)