1.Rút gọn: \(x=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)}\)
2. cho hàm số y=(m-1)x+2m. tìm tất cả các giá trị của m để đồ thị hàm số y=(m-1)x+2m cắt hai trục tọa độ và tạo với hai trục một tam giác có diện tích bằng 1 ( đvdt)
3. a) giải phương trình \(\left(x+5\right)\sqrt{x+3}=\left(x+1\right)\left(x^2+2x+3\right)\)
b) Tìm x, y nguyên thỏa mãn \(x^2-xy+y^2=2x-y\)
Cho biểu thức \(A=\left(\frac{1}{\sqrt{x+2}}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}\)
a,Tìm ĐKXĐ và rút gọn biểu thức A
b,Tìm tất cả các giá trị của x để A>1/2
c,Tìm tất cả các giá trị của x để B=5/2.A là 1 số nguyên
Cho biểu thức: \(B=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) Tìm x để B xác định
b) Rút gọn B
c) Tìm giá trị của B biết \(x=4-2\sqrt{3}\)
d) Tìm x để \(B< \frac{1}{2}\)
e) Tìm \(x\in Z\) để \(B\in Z\)
f) Tìm giá trị nhỏ nhất của B
cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\) với x≥0, x≠4, x≠9
1, rút gọn P. tính giá trị của P khi x=\(\sqrt{4+2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
2, tìm tất cả các giá trị nguyên của x để P<0
3, tìm các giá trị nguyên của x để P có giá trị là số nguyên
4, tìm GTNN của P
1. Cho A = \(\frac{x-3}{\sqrt{x-1}+\sqrt{2}}\). Tìm GTNN của A
2. Cho B = \(\frac{6-x-\sqrt{x}}{\sqrt{x}+3}\). Tìm GTLN của B
3. Cho C = \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}^{ }}\right)\)tất cả bình phương . \(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\). Tìm a để C >0, Tìm a để C = -2
HELP MEEEEE
cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right)\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
với x≥0; x≠4; x≠9
1, rút gọn P
2, tìm tất cả các giá trị nguyên của x để P<0
3, tìm GTNN của P
tìm đk để các căn thức có nghĩa 2)
a) \(y=\dfrac{1-\sqrt{x}}{2-\sqrt{3-x}}\) A=\(\left(1:\dfrac{\sqrt{1+x}}{3}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)
\(\dfrac{3}{\sqrt{x-2}-\sqrt{7-2x}}\) a)rút gọn A
b) tìm giá trị lớn nhất của A=\(-5+\sqrt{1-9x^2+6x}\)
c) y=\(\dfrac{\sqrt{x^2+1}}{\left|x\right|-3}\)
d) y=\(\dfrac{2x}{x^2-9}-3\sqrt{5-2x}\)
\(Cho A=\left (\frac{2-\sqrt[3]{4x}}{x-\sqrt[3]{2x^2}} \right ):\left ( \sqrt[3]{2}+\sqrt[3]{x} \right )-\frac{1}{\sqrt[3]{x}}\) với \(x\ne0,-2\)
Tìm \(x\in Z \) để \(A ^3 \in Z\)
2) K=
\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a. Tìm x để K có nghĩa
b. Rút gọn
c. Tìm x để K =1/2
d. Tìm giá trị lớn nhất của K
3) G=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a. Xác định x để G tồn tại
b. Rút gọn
c. Tìm giá trị của G để x= 0,16
d. Tìm giá trị lớn nhất của G
e. Tìm x thuộc Z để G nhận giá trị nguyên
f. Cm nếu 0<x<1 thì G nhận giá trị dương
g. Tìm x để G nhận giá trị âm