cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3
cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3
cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3
cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3
cho biểu thức
\(A=\left(\dfrac{x}{x^2-4}-\dfrac{4}{2-x}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
a.rút gọn A
b.tìm giá trị nguyên của x để A nhận giá trị nguyên
helpp
1) Cho P = \(\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-x^2}+1\right)\)
a) rút gọn b) tìm x để P > 0
2) Cho Q = \(\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{x^3+27}+\dfrac{1}{x+3}\right):\dfrac{x^2-1}{x+3}\)
a) rút gọn b) tìm GTLN
3) Cho A = \(\dfrac{1}{\left(x-y\right)^3}\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)+\dfrac{3}{\left(x-y\right)^4}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{6}{\left(x-y\right)^5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
chứng minh A là lập phương một số hữu tỉ
Cho biểu thức: \(A=\dfrac{x^3-3}{\left(x+1\right).\left(x-3\right)}-\dfrac{2.\left(x-3\right)}{x+1}-\dfrac{x+3}{x-3}\). Tìm giá trị nguyên của x để A có giá trị nguyên
Cho biểu thức: \(A=\dfrac{x^3-3}{\left(x+1\right).\left(x-3\right)}-\dfrac{2.\left(x-3\right)}{x+1}-\dfrac{x+3}{x-3}\). Tính giá trị nguyên của x để A có giá trị nguyên
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)