Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Ngọc Huyền

Cho phương trình : x\(^2\) + 2x -3 - m = 0 

Chứng minh phương trình trên có hai nghiệm x\(_1\),x\(_2\) với mọi m. Tìm m để \(\dfrac{x_1}{x_2}\) - \(\dfrac{x_2}{x_1}\) = -\(\dfrac{8}{3}\)

Giải giúp mình với ạ !!!

Akai Haruma
15 tháng 3 2021 lúc 12:49

Lời giải:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=1+(3+m)=4+m\geq 0\Leftrightarrow m\geq -4$ (chứ không phải với mọi m như đề bạn nhé)!

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=-(m+3)\end{matrix}\right.\)

$x_1, x_2\neq 0\Leftrightarrow -(m+3)\neq 0\Leftrightarrow m\neq -3$

$\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{-8}{3}$

$\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{-8}{3}$

$\Leftrightarrow \frac{-2(x_1-x_2)}{-(m+3)}=\frac{-8}{3}$
$\Leftrightarrow x_1-x_2=\frac{4}{3}(m+3)$

$\Rightarrow (x_1-x_2)^2=\frac{16}{9}(m+3)^2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow 4+4(m+3)=\frac{16}{9}(m+3)^2$

$\Leftrightarrow m+3=3$ hoặc $m+3=\frac{-3}{4}$

$\Leftrightarrow m=0$ hoặc $m=\frac{-15}{4}$ (đều thỏa mãn)


Các câu hỏi tương tự
 Huyền Trang
Xem chi tiết
Lê Hoàng Anh
Xem chi tiết
Pham Tuấn Anh
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
2008
Xem chi tiết
Thanh Linh
Xem chi tiết
Nguyên
Xem chi tiết
illumina
Xem chi tiết
KYAN Gaming
Xem chi tiết