Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
Tìm tham số m để phương trình sau có đúng 2 nghiệm phân biệt: \(x^3-\left(1+m\right)x^2+\left(m-1\right)x+2m-2=0\)
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
Cho phương trìn x^2-(3m-1)x+2m^2+2m=0 (1)
a) giải phương trình với m = 1
b) tìm giá trị của m để pt (1) có 2 nghiệm phân biệt x1, x2 sao cho \(\left|x_1-x^{ }_2\right|=2\)
Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)
cho phương trình \(\left(m+3\right)x^2+3\left(m-1\right)x+\left(m-1\right)\left(m+4\right)\) =0
a/Định m để phương trình có 2 nghiệm trái dấu
b/ Định m để phương trình có ít nhất 1 nghiệm âm
tìm m để phương trình \(\dfrac{x^2-2x+1}{x^2+4x+4}-m\left|\dfrac{x+2}{x-1}\right|=12\) có đúng 4 nghiệm
cho phương trình x2 -2(m-3)x-2m+5=0 ( m là tham số ) (1)
a) giải phương trình với m = -1
b) Tìm cá giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1,x2 thỏa mãn
\(\left[x_1^2-2\left(m-3\right)x_1-2m+3\right].\left[x_2^2-2\left(m-3\right)x_2-2m+3\right]=m^2-3m+6\)
Cho phương trình \(x^2-2mx+2m^2-1=0\)(với m là tham số). Để phương trình có 2 nghiệm x1, x2 thỏa mãn \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\) thì m = ...