\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)
\(\Leftrightarrow2cos^2x-cosx-2m.cosx+m=0\)
\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=\frac{\pi}{3}+k2\pi\\cosx=m\end{matrix}\right.\)
a/ Do pt đầu có 2 nghiệm thuộc \(\left[-\frac{\pi}{2};\pi\right]\) (là \(x=\pm\frac{\pi}{3}\)) nên pt có 3 nghiệm thuộc khoảng đã cho khi và chỉ khi \(cosx=m\) có đúng 1 nghiệm trên khoảng đã cho
Từ đường tròn lượng giác ta được \(\left[{}\begin{matrix}m=1\\-1\le m< 0\end{matrix}\right.\)
b/ Do pt đầu có 3 nghiệm thuộc \(\left(0;\frac{5\pi}{2}\right)\) (là \(x=\frac{\pi}{3};\frac{5\pi}{3};\frac{7\pi}{3}\)) nên để pt có 5 nghiệm pb thuộc khoảng đã cho khi và chỉ khi \(cosx=m\) có 2 nghiệm pb trên khoảng đã cho
Từ đường tròn lượng giác ta suy ra \(-1< m\le0\)