\(\dfrac{7}{P}\) chỉ có GTLN chứ ko có GTNN
\(\dfrac{7}{P}\) chỉ có GTLN chứ ko có GTNN
Cho: \(A=\dfrac{3\sqrt{x}}{x+\sqrt{x}+1}\) (ĐKXĐ: x>0; \(x\ne1\)). Tìm x để A đạt giá trị nhỏ nhất
cho biểu thức
A=(\(\dfrac{x\sqrt{x}-x}{x-1}+\dfrac{4\sqrt{x}}{x+\sqrt{x}}\)) : \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ( với \(x\ge0,x\ne1\) )
a, rút gọn
b, tìm giá trị nhỏ nhất của biểu thức A
tìm giá trị lớn nhất của P= \(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)(Đkxđ: x>0; x≠1) với 0<x≤3
giúp mik với ạ :((
cho biểu thức \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
a) rút gọn A
b) tính giá trị của A tại x=\(3+2\sqrt{2}\)
1.Cho biểu thức A=\(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
a, rút gọn biểu thức
b, Tìm x để A có giá trị bằng 0
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
cho A = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2x}\) và B = \(\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}\)
a, tính giá trị của biểu thức A khi x = 36
b, rút gọn biểu thức P = B : A
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0
Cho biểu thức K=\(\dfrac{y}{\sqrt{xy}-x}+\dfrac{x}{\sqrt{xy}+y}-\dfrac{x+y}{\sqrt{xy}}\left(x>y>0\right)\)
a, rút gọn biểu thức K
b, Tính giá trị của K biết \(2x^2+2y^2=5xy\)
c, Tìm giá trị nhỏ nhất của biểu thức M=\(x^2-\dfrac{K}{y\left(x+y\right)}\)