Phương trình đường thẳng AB: \(4x+3y+12=0\)
Diện tích tam giác ABC nhỏ nhất khi khoảng cách từ điểm C đến AB nhỏ nhất.
\(d\left(C;AB\right)=\dfrac{\left|4.\dfrac{c^2}{4}+3c+12\right|}{5}=\dfrac{1}{5}.\left|\left(c+\dfrac{3}{2}\right)^2+\dfrac{39}{4}\right|\ge\dfrac{39}{20}\)
Dấu "=" xảy ra khi và chỉ khi \(c=-\dfrac{3}{2}\) => \(C\left(\dfrac{9}{16};-\dfrac{3}{2}\right)\)
❤Hana
Đúng 1
Bình luận (0)