ĐKXĐ: \(x\ge0\)
Với \(x=0\Rightarrow P=0\)
Với \(x>0\Rightarrow P=\frac{1}{\sqrt{x}+\frac{1}{\sqrt{x}}+1}\le\frac{1}{2\sqrt{\sqrt{x}.\frac{1}{\sqrt{2}}}+1}=\frac{1}{3}\)
\(\Rightarrow P\le\frac{1}{3}\Rightarrow1\ge3P\)
Dấu "=" có xảy ra tại \(x=1\)
ĐKXĐ: \(x\ge0\)
Với \(x=0\Rightarrow P=0\)
Với \(x>0\Rightarrow P=\frac{1}{\sqrt{x}+\frac{1}{\sqrt{x}}+1}\le\frac{1}{2\sqrt{\sqrt{x}.\frac{1}{\sqrt{2}}}+1}=\frac{1}{3}\)
\(\Rightarrow P\le\frac{1}{3}\Rightarrow1\ge3P\)
Dấu "=" có xảy ra tại \(x=1\)
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
Cho biểu thức
X= 1:\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x+1}}{x+\sqrt{x}+1}-\frac{\sqrt{x}-1}{x-1}\right)\)
a) Rút gọn biểu thức X
b) Chứng minh X>3 với mọi x>0 và x≠1
Cho biểu thức:\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
a, Rút gọn P
b, Tính P khi \(x=33-8\sqrt{2}\)
c, Chứng minh rằng P < \(\frac{1}{3}\)
Cho biểu thức Y=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a. Rút gọn biểu thức Y. Tìm giá trị nhỏ nhất của Y
b. cho x>1. Chứng minh rằng Y-|Y|=0
Cho 3 số dương x, y, z thỏa mãn điều kiện : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=1\) . Chứng minh rằng : \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\)≤1
Cho biểu thức: \(P=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) với ( \(x\ge0;x\ne1\) )
a) Rút gọn biểu thức trên
b) Chứng minh rằng P>0 với mọi \(x\ge0\) và \(x\ne1\)
Chứng minh:\(\sqrt{X^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}>=\frac{3}{2}\sqrt{17}\)
Cho biểu thức A=\(\left(\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x}}{x+\sqrt{x+1}}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
1, Rút gọn A
2, Chứng minh rằng A > 0 với mọi x\(\ne1\)
3, Với giá trị nào của x thì A có giá trị lớn nhất. Tìm GTNN đó?
1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)
2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:
a) M-N
b) \(M^3-N^3\)
3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\))
4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)
5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)
6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)
7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)
9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)
10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)