Cho (O;r) nội tiếp tam giác ABC. Các tiếp điểm của các cạnh BC,AB,AC lần lượt là M,N,K. Gọi P là nửa chu vi của tam giác ANC biết tính các góc của tam giác ABC
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi AH, BK là đường cao của tam giác ABC (H thuộc BC; K thuộc AC). Các tia AH, BK lần lược cắt (O) tại các điểm thứ hai là D, E a)Trên hình vẽ có bao nhiêu tứ giác nội tiếp một đường tròn. Hãy chứng minh b Chứng minh rằng: góc AHC bằng Góc ADC.
Cho tam giác ABC nhọn (AB < AB) nội tiếp (O;R) , kẻ đường cao AD của tam giác ABC, M và N là hình chiếu của D trên AB và AC. MN cắt BC tại P
1) C/m các tứ giác AMDN và BCMN nội tiếp.
2) C/m: PB.PC= PM.PN và OA vuôn góc với MN.
3) Tính diện tích hình viên phân giới hạn dây AB và cung nhỏ AB khi BA= R\(\sqrt{3}\)
4) Gọi H là giao điểm của PA với (O), I là tâm đường tròn ngoại tiếp tam giác BMN. C/m: H,D, I thẳng hàng.
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OK vuông góc với BC.(K nằm trên đường thẳng BC)
1) cm 4 điểm O,K,D,E cùng thuộc 1đường tròn
2) gọi H là điểm đối đối xứng với D qua K . cmr tứ giác BDCH là hình bình hành và H LÀ TRỰC TÂM CỦA TAM GIÁC ABC
3) gọi G là trọng tâm tam giác ABC , cmr 3 điểm H,G,O thẳng hàng
cho tam giác ABC nhọn có AB<AC nội tiếp đường tròn tâm O , bán kính R . gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC . kẻ đường kính AK của đường tròn (O) , AD cắt (O) tại điểm N
1. chứng minh AEDB , AEHF là tứ giác nội tiếp và AB.AC=2R.AD
2. chứng minh HK đi qua tring điểm M của BC
3. gọi bán kính đường tròn ngoại tiếp tứ giác AEHF là r . chứng minh OM^2=R^2-r^2
4. chứng minh OC vuông góc với DE và N đối xứng với H qua đường thẳng BC
Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròm (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và SC lần lượt tại M và N. Chứng minh rằng: a) tam giác AMN là tam giác cân b) các tam giác EAI và DAI là những tam giác cân c) Tứ giác AMIN là hình thoi
cho tam giác ABC nhọn ABC nội tiếp đường tròn (O).E là điểm chính giữa cung nhỏ BC. Gọi M là điểm trên cạnh AC sao cho EM=MC( M khác C) N là giao điểm BM với đường tròn tâm O ( N khác B). Gọi I là giao điểm của BM và AE, K là giao điểm của AC với EN. c/m tứ giác EKMI nội tiếp
2. Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AE, BF, CG cắt nhau tại H (với E thuộc BC, F thuộc AC, G
thuộc AB).
a/ Chứng minh các tứ giác AFHG và BGFC là các tứ giác nội tiếp.
b/ Gọi I và M lần lượt là tâm các đường tròn ngoại tiếp của các tứ giác AFHG và BGFC. Chứng minh MG là tiếp tuyến của đường tròn tâm I .
c/ Gọi D là giao điểm thứ hai của AE với đường tròn tâm O. Chứng minh: EA2 + EB2 + EC2 + ED2 = 4R2.
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). AD, BE, CF là các đường cao cắt nhau tại H. Vẽ đường kính AK của đường tròn (O) CM tam giác ADB đồng dạng tam giác ACK và AD = AC.AB/ 2R