Cho nửa đường tròn tâm O đường kính AB = 20cm . C là 1 điểm chính giữa của nửa đường tròn. Điểm H thuộc bán kính OA sao cho OH = 6cm. Đường vuông góc với OA tại H cắt nửa đường tròn ở D. Vẽ dây AE // DC. Gọi K là hình chiếu của E trên AB. Tính diện tích tam giác AEK
cho nửa đường tròn tâm o đường kính ab cố định. gọi c là điểm chính giữa của cung ab và m là điểm bất kì thuộc cung ac. bm cắt oc tại d. tiếp tuyến với nửa đường tròn tâm o tại điểm m cắt đường cd tại điểm e.
Cm:a)bd,bm ko có giá trị phụ thuộc vào vị trí điểm m
b)ed=em.
Cho nửa đường tròn (O;R),đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn OC lấy điểm E (E khác O,C). Tia AE cắt đường tròn (O) tại M. Tiếp tuyến tại M của đường tròn (O) cắt OC ở D. Gọi K là giao điểm của BM và OC
a) Chứng minh tứ giác OBME nội tiếp 1 đường tròn.
b) Chứng minh tam giác MDE cân và BM.BK không phụ thuộc vào vị trí của điểm E.
c)Tìm vị trí của điểm E để MB=1/2MA
Cho nửa đường tròn tâm O đường kính AB. Trên nửa đường tròn lấy các điểm E và D khác A, B sao cho E nằm trên cung AD. Gọi H là giao điểm của AD và BE, C là giao điểm AE và BD. M là hình chiếu của H trên AB.
a) Chứng minh tứ giác BDHM là tứ giác nội tiếp.
b) Gọi K là giao điểm của MD và BH, chứng minh BK.HE = BE.HK
c) Gọi I là tâm đường tròn ngoại tiếp tam giác CDE. Chứng minh IE là tiếp tuyến của đường tròn tâm O.
Cho đường tròn đường kính AB, C là một điểm trên đường kính AB. Trên đường tròn lấy điểm D,gọi M là một điểm chính giữa cung BD. Đường thẳng MC cắt đường tròn tại E, đường thẳng DE cắt AM tại K. Đường thẳng đi qua C và song song với AD cắt DE tại F. Chứng minh rằng: a) Tứ giác AKCE nội tiếp một đường tròn
b) CK vuông góc AD
c) CF = CB
Cho nửa đường tròn (O) đường kính AB = 2R.Điểm C cố định trên nửa đường tròn.Điểm M thuộc cung AC (M≠A,C).Hạ MH\(\perp\)AB tại H,tia MB cắt CA tại E,kẻ EI\(\perp\)AB tại I.Gọi K là giao điểm của AC và MH . Chứng minh rằng :
a) Tứ giác BHKC là tứ giác nội tiếp và AK.AC=AH.AB
b)AE.AC+BE.BM không phụ thuộc vị trí của điểm M trên cung AC.
c)Chứng minh đường tròn ngoại tiếp △MIC luôn đi qua 2 điểm cố định
1.Cho nửa đường tròn (O),đường kính AB,điểm C thuộc nửa đường tròn.Các tiếp tuyến của nửa đường tròn tại C và B cắt nhau ở D.Đường vuông góc với AB tại O,cắt AC ở E.Tứ giác OCED là hình gì?Vì sao?
1.Cho nửa đường tròn (O),đường kính AB,điểm C thuộc nửa đường tròn.Các tiếp tuyến của nửa đường tròn tại C và B cắt nhau ở D.Đường vuông góc với AB tại O,cắt AC ở E.Tứ giác OCED là hình gì?Vì sao?
Cho nửa đường tròn (O; R) đường kính AB. Từ O kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại điểm C. Trên cung CB lấy một điểm M bất kì. Kẻ CH vuông góc với AM tại H. Gọi N là giao điểm của OH và MB.
a. Chứng minh tứ giác CHOA nội tiếp được.
b. Chứng minh ˆCAO=ˆONB=45°CAO^=ONB^=45°
c. OH cắt CB tại điểm I và MI cắt (O) tại điểm thứ 2 là D. Chứng minh
CM // BD
Giải giúp mình câu c với ạ