2. Cho nửa đường tròn(O,R) đường kính AB . Từ một điểm M trên nửa đường tròn , vẽ tiếp tuyến xy .Kẻ AD và BC cùng vuông góc với xy (với D và C thuộc xy)
a, chứng minh rằng MC=MD và AD+BC=2R
b, chứng minh đường tròn đường kính CD tiếp xúc với AB
c, tìm vị trí điểm M trên nửa đường tròn (O) sao cho MA.MB đạt giá trị lớn nhất
Cho đường tròn tâm O, đường kính AB. Qua điểm C thuộc đường tròn (C khác A và B) kẻ tiếp tuyến d với đường tròn. Từ O kẻ đường thẳng vuông góc với BC cắt BC tại I và cắt tiếp tuyến d tại M.
a) chứng minh IB = IC
b) chứng minh △MBO = ΔMCO, suy ra MB là tiếp tuyến của đường tròn tâm O
c) từ A kẻ AE vuông góc với d (E thuộc d), từ C kẻ CH vuông góc với AB (H thuộc AB). chứng minh CE2 = AE.BH
Cho nửa đường tròn tâm O đường kính BC=2R, A là một điểm bất kìa trên nửa đường tròn khác B và C. Kẻ AH vuống góc với BC, gọi E và F là chân đường vuông góc hạ từ H xuống AB và AC.
a) Cm AE.AB=AF.AC và EF^3=BE.CF.BC
b) Gọi I là điểm đối xứng của H qua AB. Cm IA là tiếp tuyến của nửa đường tròn.
c) Tìm vị trí của A để diện tích tam giác AHB lớn nhất.
Dạ em chỉ cần câu c thôi ạ, em cảm ơn ạ.
Cho nửa đường tròn tâm (O) đường kính AB, tiếp tuyến Bx. Qua c trên nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Bx ở M, tia AC cắt Bx ở N
a) CMR: OM vuông góc vs BC
b) CMR: M là trung điểm BN
c) Kẻ CH vuông góc vs AB, AM cắt CH ở I. CMR I là trung điểm CH
a, CM : góc COD = 90o
b, CM : CD = AC + BD
c, gọi H là hình chiếu của M trên AB , I là giao điểm BC và MH . CM : IM = IH
cho đường tròn tâm o bán kính R , dây BC cố định , BC< 2R . điểm A thay đổi trên cung lớn BC sao cho AB < AC . Kẻ đường kính Ad . BC cắt tiếp tuyến tại A của (o) ở M. a, IA . ED = OE .AC , DC // AE . b , Gọi G là gaio điểm của MO với đường tròn ngoại tiếp tam giác AEF . chứng minh tâm đường tròn nội tiếp tam giác ABG chạy trên một đường cố định .
Cho nửa đường tròn tâm (O) đường kính AB . Vẽ hai tiếp tuyến Ax , By với nửa đường tròn . M là 1 điểm bất kì trên nửa đường tròn . Qua M vẽ đường tiếp tuyến với cắt đường tròn cắt Ax , By thứ tự tại D,C Chứng minh : a) 4 điểm A,D,M,O cũng thuộc 1 đường tròn b) Đường tròn đường kính CD nhận AB là tiếp tuyến
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
Cho đường tròn tâm O bán kính R và đường thẳng (d) cắt đường tròn tâm O tại hai điểm C và D (đường thẳng d không đi qua tâm O). Từ điểm S bất kì thuộc tia CD (S nằm ngoài đường tròn tâm O), kẻ hai tiếp tuyến SA và SB với đường tròn tâm O (với A và B là các tiếp điểm). Gọi H là trung điểm của đoạn CD và E là giao điểm của AB với SC. Chứng minh rằng: Khi S di chuyển trên tia CD (S nằm ngoài đường tròn tâm O) thì đường thẳng AB luôn đi qua 1 điểm cố định