Cho nửa đường tròn (O), đường kính AB. Từ một điểm M nằm trong nửa đường tròn đó (M ∉ AB), kẻ đường vuông góc với AB tại H (H ≠ A, B và O). Kéo dài AM và BM cắt nửa đường tròn (O) lần lượt tại C và D. Gọi N là giao điểm của AD và BC.a) Chứng minh 4 điểm D, M, C, N cùng thuộc một đường tròn.b) Chứng minh 3 điểm M, N, H thẳng hàng.c) Chứng minh OD là tiếp tuyến của đường tròn đi qua 4 điểm D, M, C, N.
cho nửa đưởng tròn tâm o đường kính ab. lấy điểm d trên bán kính ob (khác O,B). gọi h là trung điểm của ad.đường vuông góc tại h với ab cắt nửa đường tròn tại c. đường tròn tâm i đường kính bd cắt tiếp bc tại e a) tứ giác acde là hình gì ? b)c/m tam giác ceh cân tại h và he là tiếp tuyến của (I)
cho nửa đường tròn (o; ab)c là điểm nằm giữa o và a ,đường thẳng vuông góc với ab . tại c cắt nửa đường tròn tại i , k là điểm bất kỳ nằm trên đoạn thẳng ci (k khác c và i) , tia ak cắt nửa đường tròn (o) tại m, tia bm cắt tia ci tại d. chứng minh: a, các tứ giác acmd, bckm nội tiếp đường tròn. b, ck.cd = ca.cb. c, gọi n là giao điểm của ad và đường tròn (o) chứng minh b,k,n thẳng hàng
Cho nửa đường tròn tâm O đường kính AB=2R, I là trung điểm AO.Dựng đường thẳng d đi qua I vuông góc với AB cắt đường tròn tại K. Lấy 1 điểm C thuộc IK, AC cắt nửa đường tròn tại M. Tiếp tuyến qua M cắt d tại N, BM cắt d tại D.
a) Chứng minh N là trung điểm CD
b) Tính CD khi C là trung điểm của IK
Cần Ý B
Cho (O) và điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB, AC (B, C là tiếp điểm). Gọi OH cắt BC tại H.
a) C/m A, B,O, C cùng thuộc 1 đường tròn
b) Kẻ đường cao CD. Gọi AD cắt đường tròn tại E. Gọi I là trung điểm của ED. C/m 5 điểm A, B, I, O, C cùng thuộc 1 đường tròn
c) C/m BD // OA
d) C/m \(\Delta AHE\) đồng dạng \(\Delta ADO\)
e) C/m \(\Delta OHD\) đồng dạng \(\Delta ODA\)
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Giúp em vs ạaa.
Cho đường tròn (O;R) và A thuộc đường tròn. Trên tiếp tuyến với (O) tại A lấy điểm K. Một đường thẳng đi qua K cắt (O) tại B và C ( B nằm ở giữa C và K). Gọi M là trung điểm BC a) CM: A,O,M,K cùng thuộc đường tròn b) Vẽ đường kính AM của (O). Đường thẳng đi qua A vuông gốc BC cắt MN tại H CM BHCN là hình bình hành c) CM: H là thuộc tâm tam giác ABC
Cho nửa đường tròn (O;R),đường kính AB.H là trung điểm của OA.Qua H vẽ đường thẳng vuông góc với OA,đường thẳng này cắt nửa đường tròn (O) tại C.Gọi E,F ll là hình chiếu vuông góc của H trên AC và BC. a)C/m CEHF là hcn. b)C/m EF là tiếp tuyến của nửa đtđk HB. c)Đường thẳng EF cắt nửa đường tròn (O) tại M,N.C/m CM=CN