Đặt \(S=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3S=1-\frac{2}{3}+\frac{3}{3^2}-...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\\ S+3S=\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)+\left(1-\frac{2}{3}+\frac{3}{3^2}-...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)\\ 4S=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{1}{3^{100}}\\ \Rightarrow12S=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}+\frac{1}{3^{99}}\\ 12S+4S=\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)\\ 16S=3-\frac{1}{3^{99}}-\frac{1}{3^{99}}-\frac{1}{3^{100}}\\ S=\frac{3-\frac{2}{3^{99}}-\frac{1}{3^{100}}}{16}< \frac{3}{16}\left(đpcm\right)\)