\(I_{V1}=\dfrac{U_1}{R_V};I_{V2}=\dfrac{U_2}{R_V};I_{V3}=\dfrac{U_3}{R_V}\)
\(U_2=\left(2R+R_V\right)I_{V1}=\left(2R+R_V\right)\cdot\dfrac{U_1}{R_V}=U_1\left(\dfrac{2R}{R_V}+1\right)\Leftrightarrow\dfrac{R}{R_V}=\dfrac{\dfrac{U_2}{U_1}-1}{2}\left(1\right)\)
\(U_3=2R\left(I_{V1}+I_{V2}\right)+U_2=2R\left(\dfrac{U_1+U_2}{R_V}\right)+U_2=\dfrac{R}{R_V}\cdot2\left(U_1+U_2\right)+U_2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow U_3=\left(\dfrac{U_2}{U_1}-1\right)\left(U_1+U_2\right)+U_2\)
thay số ta được: \(5=\left(U_2-1\right)\left(U_2+1\right)+U_2=U^2_2+U_2-1\Leftrightarrow U^2_2+U_2-6=0\Leftrightarrow\left[{}\begin{matrix}U_2=2V\\U_2=-3\left(loại\right)\end{matrix}\right.\)
\(U_4=2R\left(I_{V1}+I_{V2}+I_{V3}\right)+U_3\)
\(\Leftrightarrow U_4=\dfrac{2R}{R_V}\left(U_1+U_2+U_3\right)+U_3\)
\(\Leftrightarrow U_4=\left(\dfrac{U_2}{U_1}-1\right)\left(U_1+U_2+U_3\right)+U_3\)
\(\Leftrightarrow U_4=\left(2-1\right)\left(1+2+5\right)+5=13V\)