Tóm tắt :
R1//R2//R3
U=90V
R1=3R2=5R3
I = 6,3A
_______________________
I1=?; I2 =?; I3 =?
R2 =?; R2 =? ;R3= ?
GIẢI :
Điện trở tương đương toàn mạch là:
\(R_{tđ}=\frac{U}{I}=\frac{90}{6,3}=\frac{100}{7}\left(\Omega\right)\)
=> \(\frac{1}{R_{tđ}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\)
<=> \(\frac{7}{100}=\frac{1}{R_1}+\frac{1}{\frac{R_1}{3}}+\frac{1}{\frac{R_1}{5}}=\frac{1}{R_1}+\frac{3}{R_1}+\frac{5}{R_1}=\frac{1+3+5}{R_1}=\frac{9}{R_1}\)
<=> \(\frac{7}{100}=\frac{9}{R_1}\rightarrow R_1=\frac{9.100}{7}=\frac{900}{7}\Omega\approx129\Omega\)
=> \(\left\{{}\begin{matrix}R_2=\frac{129}{3}=43\left(\Omega\right)\\R_3=\frac{129}{5}=25,8\left(\Omega\right)\end{matrix}\right.\)
Vì R1//R2//R3 => U=U1=U2=U3 = 90V
=> \(\left\{{}\begin{matrix}I_1=\frac{90}{129}\approx0,7\left(A\right)\\I_2=\frac{90}{43}\approx2,1\left(A\right)\\I_3=\frac{90}{25,8}\approx3,5\left(A\right)\end{matrix}\right.\)
\(R_{tđ}=\frac{U}{I}=\frac{90}{6,3}=\frac{100}{7}\Omega\)
\(\Leftrightarrow\frac{1}{R_{tđ}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\)
\(\Leftrightarrow\frac{7}{100}=\frac{1}{R_1}+\frac{1}{\frac{R_1}{3}}+\frac{1}{\frac{R_1}{5}}\)
\(\Leftrightarrow\frac{7}{100}=\frac{1}{R_1}+\frac{3}{R_1}+\frac{5}{R_1}\)
\(\Leftrightarrow\frac{7}{100}=\frac{9}{R_1}\)
\(\Leftrightarrow R_1\approx129\Omega\)
Mà : R1=3R2=5R3
\(\Rightarrow R_2\approx\frac{129}{3}\approx43\Omega\)
\(R_3\approx\frac{129}{5}\approx25,8\Omega\)
Do \(R_1//R_2//R_3\Rightarrow U_1=U_2=U_3=U=90V\)
\(\Rightarrow I_1=\frac{U_1}{R_1}\approx\frac{90}{129}\approx0,7\left(A\right)\)
\(I_2=\frac{U_2}{R_2}\approx\frac{90}{43}\approx2,1\left(A\right)\)
\(I_3=\frac{U_3}{R_3}\approx\frac{90}{25,8}\approx3,5\left(A\right)\)