Bài 14. Cho tam giác ABC. Trên cạnh AB lấy điểm E sao cho EB = 2EA; M là điểm thỏa mãn vecto ME + 3vecto MC =vecto 0. Biểu diễn vectơ MA qua các vectơ MB , MC .
Cho tam giác ABC và điểm M nằm trên cạnh BC sao cho BC=4BM . Hãy phân tích mỗi vectơ AM MC, theo hai vectơ AB AC
Tam giác ABC có BC=a, AC=b, AB=c Gọi I là tâm điểm tròn nội tiếp tam giác ABC chứng minh: a vectơ IB+ b vectơ IB+ c vectơ IC = Vectơ 0
Cho tam giác ABC. Điểm M nằm trên cạnh BC sao cho MB = 2MC. Hãy phân tích vectơ \(\overrightarrow{AM}\) qua 2 vecto \(\overrightarrow{AB,}\overrightarrow{AC}\)
Cho tam giác ABC đường trung tuyến AD. Gọi I là trung điểm AD, điểm K nằm trên cạnh AC sao cho \(\overrightarrow{KC}=-2\overrightarrow{KA}\)
a) Hãy phân tích vectơ BI, BK theo vectơ BA, BC
b) Chứng minh B,I,K thẳng hàng
c) Nêu các xác định điểm M sao cho \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)
Nhanh nha gấp lắm
Trên đường thẳng chứa cạnh BC của tam giác ABC lấy một điểm M sao cho \(\overrightarrow{MB}=3\overrightarrow{MC}\). Hãy phân tích vectơ \(\overrightarrow{AM}\) theo hai vectơ \(\overrightarrow{u}=\overrightarrow{AB}\) và \(\overrightarrow{v}=\overrightarrow{AC}\) ?
Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích các vectơ \(\overrightarrow{AB,}\overrightarrow{BC},\overrightarrow{CA}\) theo hai vectơ \(\overrightarrow{u}=\overrightarrow{AK};\overrightarrow{v}=\overrightarrow{BM}\) ?
Cho tam giác ABC.
a. Xác định điểm M thoả mãn đẳng thức vectơ: 2 vecto MA - vecto MB + vecto MC = vecto 0
b. Chứng minh rằng: 2 vecto OA - vecto OB + vecto OC = 2 vecto OM với điểm O bất kỳ
Cho hình thoi ABCD tâm O có cạnh bằng 2a và góc ABC =120 độ. Gọi G là trọng tâm tam giác ABD, tính độ dài của vectơ BG + vectơ AD