Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc d \(\Rightarrow2x+3y+4=0\)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép quay Q \(\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x'=2+\left(x-2\right)cos45^0-\left(y-1\right)sin45^0\\y'=1+\left(x-2\right)sin45^0+\left(y-1\right)cos45^0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2}\left(x'-2\right)=x-2-\left(y-1\right)\\\sqrt{2}\left(y'-1\right)=x-2+y-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\sqrt{2}x'-2\sqrt{2}+1\\x+y=\sqrt{2}y'-\sqrt{2}+3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{\sqrt{2}}{2}\left(x'+y'\right)-\frac{3\sqrt{2}}{2}+2\\y=\frac{\sqrt{2}}{2}\left(y'-x'\right)+\frac{\sqrt{2}}{2}+1\end{matrix}\right.\)
Thế vào (1):
\(\sqrt{2}\left(x'+y'\right)-3\sqrt{2}+4+\frac{3\sqrt{2}}{2}\left(y'-x'\right)+\frac{3\sqrt{2}}{2}+3+4=0\)
\(\Leftrightarrow-x'+5y'-3+11\sqrt{2}=0\)
Vậy pt ảnh của d là: \(x-5y+3-11\sqrt{2}=0\)