Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho Hình vuông ABCD ,trên AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF.Vẽ AH vuông góc với BF (H∈BF),AH cắt DC và BC lần lượt tại 2 điểm M,N
a) CMR tứ giác AEMD là hình chữ nhật
b) Biết diện tích △BCH gấp 4 lần diện tích △ AEH.CMR AC=2EF
c) CMR: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Chứng minh rằng :AC=2EF
c, Chứng minh rằng \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Câu 1: Khi phân tích 2016 ra thừa số nguyên tố thì tổng các số nguyên tố là....
Câu 2: Cho hình vuông ABCD. Lấy các điểm E,F,G,H lần lượt trên cạnh AD, AB, DC và BC sao cho AE=AF=DH=5cm; BF=BG=12 cm. Diện tích EFGH=?
thanks mn nha!!))
cho hình vuông ABCD trên AB lấy điểm E và AD lấy điểm F sao cho AE=AF , vẽ AH vuông góc với BF, AH cắt DC và BC tại M và N . a/ CMR : AEMD là hình chữ nhật. b/ biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH c/ CM : 1/AD^2=1/AM^2+1/AM^2
mk mơn mọi người nha ...
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC. 2) tứ giác EFQP là hình gì ? 3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm 4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)
bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN. 2) AM = MN = NC . 3) 2EN = DM + BC .4)\(S_{ABC}=3S_{AMB}\)
bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC. 1) C/m E ,F ,I thẳng hàng . 2) tính \(S_{ABCD}\) . 3) so sánh \(S_{ADC}\) và\(2S_{ABC}\)
bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng
2) tính \(EF\le\frac{AB+CD}{2}\)
3) tứ giác ABCD phải có điều kiện gì thì EF = \(\frac{AB+CD}{2}\)
Cho tam giác ABC. Trên các cạnh AB, BC, CA lấy lần lượt các điểm D< E, F sao cho: \(\frac{AD}{AB}=\frac{BE}{BC}=\frac{CF}{CA}=\frac{1}{3}\)
Tính diện tích tam giác tạo thành bởi các đường thẳng AE, BF, CD, biết diện tích tam giác ABC là S
Cho hvuông ABCD Trên AB lấy E bất kì AH\(\perp\)DE( H\(\in\)DE) F\(\in AD\),AE=AF
a,AH2=DH.He
b\(\widehat{EHC}=90^0\),
d, AC=2EF
e,\(AH\cap BC=M,AH\cap AD=N\)
CMR\(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
---Cần Pd ,e aj----
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )