cho hình vuông ABCD có cạnh 5 cm . Trên tia AB lấy điểm I sao cho AI = 3 cm . Tia DI cắt BC tại K . Qua D kẻ đt DI cắt BC tại H
a Tính DH
b CM \(\frac{1}{DI^2}+\frac{1}{DK^2}\) ko đổi
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!
Cho hình vuông ABCD. Gọi E là một điểm thuộc cạnh BC( E khác BC). Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M.
a, Chứng minh: AI=AE
b, Chứng minh: AE.AK=AD.IK
c, Chứng minh: \(\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi khi E thay đổi trên cạnh BC
d, Chứng minh rằng: \(\dfrac{1}{AE}+\dfrac{1}{AK}=\dfrac{\sqrt{2}}{AM}\)
e, Tìm vị trí của E để độ dài đoạn thẳng IK ngắn nhất
Cho ∆DEF vuông tại D, đường cao DH. Biết EH=9 cm, HF=16 cm
a. Tính DH, DE, DF, góc F
b. Trên tia đối của tia DE lấy điểm I sao cho góc DFI = 30° (Vẽ đúng số đo). Tính DI, IF
c. Vẽ DK là phân giác góc HDK (K thuộc EF) M là hình chiếu của F lên DK. Chứng minh: 1/FM^2 = 1/FD^2 + 1/FK^2
Giúp mình câu c với ạ, lm hoài mà ko ra 😭😭😭😭😭
Cho tam giác ABC vuông ở A,AB=3cm,AC=4cm
a,Giải tam giác ABC
b,Gọi I là trung điểm của BC,vẽ AH vuông góc BC.Tính AH,AI
c,Qua A kẻ đường thẳng vuông góc với AI.Đường thẳng vuông góc với BC tại B cắt xy tại điểm M,đường thẳng vuông góc với BC tại C cắt xy tại điểm N.Chứng minh:MB.NC=BC mũ 2 trên 4
d,Gọi K là trung điểm của AH. CM 3 điểm B,K,N thẳng hàng
Cho hình vuông ABCD . Gọi E là một điểm thuộc cạnh BC ( E khác B ) Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M.
a) Chứng minh AI =AE
b) Chứng minh AE. AK=AD.IK
c) Chứng minh 1/ AE^2 + 1/ AK^2 không đổi khi E thay đổi trên BC
d Chứng minh 1/ AE +1/AK =căn 2/ AM
Cho ΔABC vuông tại A,đường cao AK
a/Cho AB = 15cm, KB = 9cm.Tính AK ,KC,AC ,số đo góc B (góc làm tròn đến phút)
b/ Vẽ H là trung điểm AC,qua H vẽ đường thẳng vuông góc với BH cắt tia BA tại Q.Kẻ BE vuông góc với CQ tại E, BE cắt AC tại D. Gọi I là giao điểm của BE và QH. Chứng minh : HK=2.DH
Cho \(\Delta ABC\) vuông tại B có \(\widehat{C}=60^0\),AC = 6 cm
a) Trên tia đối của tia CB lấy điểm N sao cho CN = AC. C/m \(\dfrac{CB}{CN}=\dfrac{AB}{AN}\)
b) Đường thẳng song song với đường phân giác của \(\widehat{ACN}\) kẻ từ B cắt AN tại H. C/m \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BN^2}\)
c) Chứng minh: CD.CB = \(\dfrac{AC^3}{MN}\)