Lời giải:
a) Xét tứ giác $IBED$ có cặp cạnh đối \(ID, BE\) vừa song song vừa bằng nhau (bằng một nửa độ dài cạnh hình vuông ABCD)
\(\Rightarrow IBED\) là hình bình hành
\(\Rightarrow IB\parallel DE\) hay \(IH\parallel DK\)
Xét tam giác $ADK$ với $IH\parallel DK$ thì theo định lý Ta-let thuận ta có:
\(\frac{AH}{HK}=\frac{AI}{ID}=1\Rightarrow AH=HK\)
b)
Xét tam giác $AIB$ và $DFA$ có:
\(AB=DA\)
\(AI=DF\)
\(\widehat{IAB}=\widehat{FDA}=90^0\)
\(\Rightarrow \triangle AIB=\triangle DFA(c.g.c)\Rightarrow \widehat{IBA}=\widehat{DAF}\)
\(\Rightarrow \widehat{IBA}+\widehat{AIB}=\widehat{DAF}+\widehat{AIB}\Rightarrow 90^0=\widehat{DAF}+\widehat{AIB}\)
hay \(\widehat{IAH}+\widehat{AHI}=90^0\Rightarrow \widehat{AHI}=180^0-90^0=90^0\)
\(\Rightarrow AF\perp IB\) (đpcm)
c)
Tam giác $BAK$ có $BH$ vừa là đường trung tuyến ứng với cạnh $AK$ (do \(AH=HK\)) vừa là đường cao (do \(BH\perp AK\) ) nên $BAK$ là tam giác cân tại $B$
\(\Rightarrow BA=BK\)