Cho hình vuông abc vẽ tia Cx là tia phân giác góc ngoài đỉnh C. Lấy M trên tia Cx. Vẽ ME vuông góc CD, MF vuông góc BC. Trên tia DC lấy G, trên tia đối tia BC lấy điểm H sao cho DG=BH=ME CMR a) CEMF và AHMG lần các hình vuông
b) 3 đường thẳng AM,HG,BĐ đồng quy
Cho hình chữ nhật ABCD có AB > AD. Gọi O là giao điểm của hai đường chéo. Kẻ AH vuông góc với BD (H thuộc B).
a, CMR: \(\Delta AHB\sim\Delta ADC\)
b, Trên tia đối của tia CB lấy điểm M sao cho AM cắt BD tại P, CD tại N.
CMR: \(\dfrac{ND}{NC}.\dfrac{MC}{MB}.\dfrac{PB}{PD}=1\)
c, Treen tia BH lấy điểm E sao cho: \(\dfrac{EB}{BH}=\dfrac{CN}{CD}\)
CMR: \(AE\perp NE\)
mK CẦN CHẮC CÂU C thôi.
Cho hình chữ nhật ABCD. Trên đường chéo BD lấy 1 điểm M, trên tia AM lấy điểm E sao cho M là Trung điểm AE. Gọi H và K lần lượt là hình chiếu của E trên BC và DC. CMR :
a, HK // AC
b, 3 điểm M, H, K thẳng hàng
( không cần vẽ hình cx đc )
Cho hình chữ nhật ABCD, kẻ BH vuông góc với AC tại H. Trên AH lấy điểm M và trên AC lấy điểm N sao cho: \(\dfrac{AM}{AH}=\dfrac{DN}{DC}\). CMR: \(MN\perp BM\)
Cho hình vuông ABCD Vẽ tia Cx là tia phân giác của góc ngoài tại đỉnh C kẻ ME vuông góc vs BC MF vuông góc vs DC
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
Bài 1: Cho hình bình hành ABCD có BD = 8cm, O là giao điểm của hai đường chéo. E, M thuộc cạnh CD sao cho: DE = EM = MC, AE cắt BD tại K, OM cắt AB tại F. CMR:
a) AF = 1/3 AB
b) Tính DK
Bài 2: Cho hình bình hành ABCD. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia BC lấy điểm F sao cho CD = CF. CMR: các đoạn thẳng AC, ED và BF đồng quy.
Cho tam giác ABC có 3 góc nhọn đường cao AH. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho HA là tia phân giác của góc MHN. CM: 3 đường BM, CN,AH đồng quy
Cho hình thang ABCD (CD>AB) với AB//CD và AB vuông góc với BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE=AG và đoạn thẳng GE không cắt đường thẳng CD. Trên đoạn thẳng DC lấy điểm F sao cho DF=GB
a) Chứng minh tam giác FDG đồng dạng với tam giác ECG
b) Chứng minh: GF vuông góc với EF