Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
huynh thi quynh phuong

cho hình thang vuong ABCD(AB//CD) đường chéo BD vuông góc với cạnh bên BC bết AB=5,DC=9,kẻ BE vuông góc với DC tại E

a)tính BD,AD

b) gọi F là điểm đối xứng với E qua BC. tính diện tích tứ giác BECF

tran nguyen bao quan
31 tháng 8 2018 lúc 10:44

a) Ta có ∠A=∠E=∠ABC=90⇒tứ giác ABED là hình chữ nhật⇒DE=AB=5;BE=AD

Áp dụng hệ thức lượng trong △BCD vuông tại B đường cao BE⇒BD2=DE.DC=5.9=45⇒BD=\(3\sqrt{5}\)

Áp dụng định lý py-ta-go trong △ABD vuông tại A⇒BD2=AB2+AD2⇒AD2=BD2-AB2=45-25=20⇒AD=\(2\sqrt{5}\)

b) gọi G là giao điểm của EF với BC

Ta có EC+DE=DC⇒EC=DC-DE=9-5=4

Áp dụng định lý py-ta-go trong △BEC vuông tại E⇒BC2=BE2+EC2=AD2+EC2=20+16=36⇒BC=6

Áp dụng hệ thức lượng trong △BEC vuông tại E đường cao EG⇒EC2=BC.GC⇒GC=EC2\(\div\)BC=16\(\div\)6=\(\dfrac{8}{3}\)

Ta có BC=GC+BG⇒BG=BC-GC=6-\(\dfrac{8}{3}\)=\(\dfrac{10}{3}\)

Áp dụng hệ thức lượng trong △BEC vuông tại E đường cao EG⇒EG2=BG.GC=\(\dfrac{8}{3}.\dfrac{10}{3}=\dfrac{80}{9}\)⇒EG=\(\dfrac{4\sqrt{5}}{3}\)

Ta có F là điểm đối xứng với E qua BC⇒EG=FG=\(\dfrac{4\sqrt{5}}{3}\)

Ta có SBECF=SBEC+SBFC=\(\dfrac{6.\dfrac{4\sqrt{5}}{3}}{2}+\dfrac{6.\dfrac{4\sqrt{5}}{3}}{2}=8\sqrt{5}\)

quang123
4 tháng 10 2020 lúc 9:53

Áp dụng định lý pí ta ngó

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Ngọc Hùng
Xem chi tiết
Huyền Trang
Xem chi tiết
Huyền Trang
Xem chi tiết
Huyền Trang
Xem chi tiết
Quynh Existn
Xem chi tiết
James Pham
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Quynh Existn
Xem chi tiết
Candy
Xem chi tiết