Ôn tập Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tràn thị trúc oanh

Cho hình thang ABCD có hai cạnh bên AD và BC bằng nhau , đường chéo AC vuông góc với cạnh bên BC. Biết AD=5a, AC =12a

a) tính \(\dfrac{sinB+cosB}{sinB-cosB}\)

b) Tính diện tích hình thang ABCD

Mặc Chinh Vũ
24 tháng 6 2018 lúc 15:16

a) Có AD = BC = 5a, AC = 12a
Xét tam giác ABC vuông tại C ⇒ AB2 =169a2 ⇔ AB= 13a ( Định lý Pitago )
Xét tam giác ABC vuông tại C, có: \(\sin ABC\) = \(\dfrac{12a}{13a}\), \(\cos ABC\) = \(\dfrac{5a}{13a}\)
=> (\(\dfrac{\sin B+\cos B}{\sin B-\cos B}\)) = ( \(\dfrac{12a}{13a}+\dfrac{5a}{13a}\))/\(\dfrac{12a}{13a}-\dfrac{5a}{13a}\))= \(\dfrac{17}{7}\)
b) Trong tam giác ADC, Kẻ AH vuông góc DC
Trong tam giác ACB, Kẻ CK vuông góc AB
Có: AB//DC ( tính chất hình thang)
Mà: AD vuông góc DC
⇒ AD vuông góc AB (1)
Tương tự có CK vuông góc DC (2)
Từ (1) và (2) ⇒ Tứ giác ABCD là hình chữ nhật
⇒ AD = CK
Xét tam giác ABC vuông tại C có CK là đường cao AB
⇔ AB. CK = CB. CA
⇒ 13a. CK = 5a. 12a
⇔ CK= ( \(\dfrac{60}{13}\) )a = AH
Xét tam giác AHC vuông tại H có HC = ( \(\dfrac{144}{13}\) )a ( pitago)
Xét tam giác AHD vuông tại H có HD = ( \(\dfrac{25}{13}\) )a ( pitago)
Mà H nằm giữa DC => DC = HC + HD = 13a
⇒ SABCD =\(\dfrac{1}{2}\)AH ( AB + CD ) = \(\dfrac{1}{2}\). ( \(\dfrac{60}{13}\) )a. (13a +13a ) = 60a2

Vậy diện tích hình thang ABCD là 60a2.


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đoàn Minh Huy
Xem chi tiết
Phương Ngọc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
illumina
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết