Cho hình chữ nhật ABCD có \(AB=\dfrac{3}{2}AD\). Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng DC tại F. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho MN vuông góc với AE. Đường phân giác của góc DAE cắt CD tại P. Chứng minh rằng: \(MN=\dfrac{2}{3}BD+DP\)
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E, F, G, H lân lượt là trung điểm của các cạnh AB, BC, CD và DA. Chứng minh bốn điểm E, F, G, H cùng thuộc một đường tròn.
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK
* Cho tam giác ABC vuông tại A có đường cao AH. Biết BH=10cm, CH=42cm. Tính BC, AH, AB và AC
* Hình thang cân ABCD có AB=30 cm, đáy nhỏ CD=10cm và góc A là \(60^0\).
a. Tính cạnh BC
b. Gọi M,N lần lượt là trung điểm AB và CD.Tính MN
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M. Đường thẳng vuông góc với AM tại A cắt đường thẳng CD tại N.
a. Chứng minh AM=AN.
b. Gọi gia điểm của đường thẳng AM với đường thẳng CD là I. Chứng minh \(\dfrac{1}{AM^2}+\dfrac{1}{AI^2}=\dfrac{1}{AB^2}\)
Giúp mình nha!
Cho hình thang ABCD (AB//CD), góc D = 90 độ, góc C bằng 30 độ
a) Chứng minh rằng diện tích hình thanh ABCD = 1/4*BC*(AB+CD)
b) Gọi M là giao điểm của BC và AD. Kẻ DK vuông góc với CM (K thuộc CM), KL vuông góc với DM (L thuộc DM). Chứng minh rằng 4*DL*DM=CD2
c) Biết BC = 8cm, diện tích hình thang ABCD = 48 cm2. Tính DM, MC (không làm tròn kết quả)
Mng giúp mik với, mai mik ktra rồi
1. Cho tam giác ABC cân tại A. Tia phân giác Ax của góc A cắt BC tại H. Trên AB lấy điểm M,trên tia đối của tia CA lấy điểm N sao cho BM=CN.
a. Nối MN cắt BC tại I. Chứng minh I là trung điểm của MN
b. Đường trung trực của MN cắt Ax tại O. Chứng minh OC vuông góc AC
c. Cm : 4/BC2 = 1/AB2 + 1/AC2
d. Biết AB= 6 cm,OB = 4,5 cm. Tính diện tích tam giác ABC
Cho hình vuông ABCD. Gọi I là điểm nằm giữa A và B. Gọi M và N là các điểm đối xứng vối I qua AC và BD. Qua I kẻ đường thẳng vuông góc với MN tại H. Chứng minh rằng khi I thay đổi trên AB thì đường thẳng IH luôn đi qua một điểm cố định