Cho hình thang ABCD , 2 cạnh bên AD và BC không song song . Gọi M là trung điểm của AB . Vẽ MH song song với AD , vẽ MK song song với BC . Gọi O là giao điểm của đường thẳng qua H và vuông góc với MH với đường thẳng qua K và vuông góc với MK . CM O cách đều 2 đỉnh C và D
cho hình thang ABCD (AB//CD). Gọi E là trung điểm của AB, F là trung điểm của CD, O là trung điểm của EF. Qua O kẻ đường thẳng song song vs CD, cắt AD và BC theo thứ tự ở M và N
Cho tam giác ABC vuông cân tại A, D thuộc AB, E thuộc AC sao cho AD=AE. Qua D vẽ đoạn thẳng vuông góc BE cắt BC tại K. Qua A vẽ đoạn thẳng vuông góc BE cắt BC tại H. Gọi M là giao điểm của DK và AC. CMR:
a) tam giác BAE = tam giác CAD (cái này mình biết làm rồi)
b) tam giác MDC cân
c) HK = HC
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang vuông ABCD vuông tại A và D. Có hai đáy AB song song với CD. Gọi M là trung điểm của đoạn thẳng AD. Điểm P và Q thuộc BC sao cho BP= CQ . Cho biết rằng MQ vuông góc với DP. Chứng minh rằng MP vuông góc với AQ.
Bài 1: Chứng minh rằng trong một hình thang có 2 đáy không bằng nhau, đường thẳng đi qua giao điểm các đường chéo và đi qua giao điểm của các đường thẳng chứa 2 cạnh bên thì đi qua trung diểm của 2 cạnh đáy.
Bài 2: Cho hình thang ABCD với đáy nhỏ AB. Đường thẳng d bất kì song song với 2 đáy cắt AD, BD, AC, BC lần lợt tại H, K, P, Q. Chứng minh HK=PQ.
cho hình thang ABCD có AB song song CD ( AB< CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E. F.
a) Chứng mình rằng N, E, F lần lượt là trung điể cạnh BC , BD, AC.
b) Gọi I là trung điểm của AB. Đuo82ng thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. Chứng minh KC = KD.
BÀI1, Cho hình thang ABCD(AB//CD) đường thẳng song song với AB cắt AD, BD, AC, BC lần lượt tại M, N, E, F. Chứng minh:MN=EF.
BÀI 2, Cho hình thang ABCD ( AB//CD) AC cắt BD tại O .Đường thẳng đi qua O // AB cắt AD và BC tại M, N. Chứng minh: OM=ON