\(BD||B'D'\Rightarrow\widehat{\left(A'B;B'D'\right)}=\widehat{\left(A'B;BD\right)}=\widehat{A'BD}\)
Mặt khác \(A'B=BD=A'D=a\sqrt{2}\) (đều là đường chéo của các hình vuông cạnh a)
\(\Rightarrow\Delta A'BD\) đều \(\Rightarrow\widehat{A'BD}=60^0\)
\(BD||B'D'\Rightarrow\widehat{\left(A'B;B'D'\right)}=\widehat{\left(A'B;BD\right)}=\widehat{A'BD}\)
Mặt khác \(A'B=BD=A'D=a\sqrt{2}\) (đều là đường chéo của các hình vuông cạnh a)
\(\Rightarrow\Delta A'BD\) đều \(\Rightarrow\widehat{A'BD}=60^0\)
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi O và O' theo thứ tự là tâm của hai hình vuông ABCD và A'B'C'D'
a) Hãy biểu diễn các vectơ \(\overrightarrow{AO},\overrightarrow{AO'}\) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho
b) Chứng minh rằng :
\(\overrightarrow{AD}+\overrightarrow{D'C}+\overrightarrow{D'A'}=\overrightarrow{AB}\)
cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên =a. gọi O là giao diem AB' và A'B. tính cosin của góc giữa BM và OC'
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1.
a) Tính cos(\(\overrightarrow{AC}\),\(\overrightarrow{DA'}\)), từ đây suy ra góc giữa hai đường thẳng AC và DA'.
b) Chứng minh BD \(\perp\) AC'.
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính \(\overrightarrow{BD}.\overrightarrow{D'C}\)
cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng a. góc BAA'= góc BAD = góc DAA' = 60 độ. tính độ dài AC'?
Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng a, cạnh bên bằng \(\frac{a\sqrt{5}}{2}\).Gọi O là tâm hình vuông ABCD và M là trung điểm SC.
a) CM (MBD) vuông góc với (SAC)
b)Góc (SA,(ABCD))=?
c)Góc ((MBD),(ABCD))=?
d)Góc ((SAB),(ABCD))=?
mọi người giúp em câu b với c nhé, cảm ơn mọi người nhiều
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = OB = OC .Góc giữa hai đường thẳng AB,BC
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng a√3 . O là tâm hình vuông . Chứng minh (SAC) vuông góc (ABCD) ; (SAC) vuông góc (SBD)
Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. G là trọng tâm tam giác A'BC. Tính 3AG2.