1,Cho hình thoi ABCD có Â=60 độ .VẼ AH vuông góc với AD, trên tia đối của HB lấy điểm E sao cho HE=HB
a, Cm abde là hình thoi
b, Ba điểm E,C,D thẳng hàng
c, EB=AC
2, Cho hình chữ nhật abcd. lấy điểm P tùy ý trên đường chéo BD. Gọi M là điểm đối xúng của C qua P
a, CM: AM song song BD
b, Gọi E,F lần lượt là hình chiếu của M trên AD,AB
c,Cm EF song song AC
D, cM E,F,P thẳng hàng
giúp e vs mai nộp rồi
1)
cho hình chữ nhật ABCD, kẻ BH vuông góc AC, M,K là trung điểm AC,CD. N là trực tâm của tam giác BMC. Chứng minh MNCK là hình bình hành => góc BMK=900
2)
cho hình chữ nhật ABCD, kẻ AD,BC thêm những đoạn CE=DF=DC. kéo dài DC 1 đoạn CH=BC. Chứng minh AE vuông góc FH
3)
hình thoi ABCD, A=600, trên cạnh AD và CD lấy MN sao cho AM+CN=AD. gọi K là điểm đối xứng của N qua BC. Chứng minh MK song song CD
giúp mình bài toán hình này nha, toán 8
1)cho hình vuông ABCD, E là điểm nằm trong hình vuông sao cho góc EDC=góc ECD=15o. F là điểm nàm ngoài hình vuông sao cho góc FBC=góc FCB=60o. Chứng minh:
a)Tam giác AB đều; b) D,E,F thẳng hàng
2) Hai đường chéo của hình bình hành ABCD cắt tại O. M,N,P,Q theo thứ tự là giao điểm các đường phân giác của các tam guacs OAB;OBC;OCD;ODA
a) CM: tứ giác MNPQ là hình thoi
b) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác MNPQ là hình vuông
3)cho hình chữ nhật ABCD , BH vuông góc với AC. gọi M,K lần lượt là trung điểm của HC và AD. chứng minh BM vuông góc với KM.
giúp mình bài toán hình này nha, toán 8
1)cho hình vuông ABCD, E là điểm nằm trong hình vuông sao cho góc EDC=góc ECD=15o. F là điểm nàm ngoài hình vuông sao cho góc FBC=góc FCB=60o. Chứng minh:
a)Tam giác AB đều; b) D,E,F thẳng hàng
2) Hai đường chéo của hình bình hành ABCD cắt tại O. M,N,P,Q theo thứ tự là giao điểm các đường phân giác của các tam guacs OAB;OBC;OCD;ODA
a) CM: tứ giác MNPQ là hình thoi
b) Hình bình hành ABCD phải có thêm điều kiện gì để tứ giác MNPQ là hình vuông
3)cho hình chữ nhật ABCD , BH vuông góc với AC. gọi M,K lần lượt là trung điểm của HC và AD. chứng minh BM vuông góc với KM.
cho tam giác ABC . Trên nửa mặt phẳng chứa đỉnh C , Có bờ là đường thẳng AB , kẻ đường thẳng AE vuông góc với AB và AE = AB . Trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC , kẻ đoạn thẳng AF vuông góc AC và AF= AC . Kẻ AD vuông góc BC ( D thuộc BC ) . EF cắt AD ở M . Chứng minh :
a, M là trung điểm của EF
b, FB vuông góc EC và FB = EC
cho tam giác ABC . Trên nửa mặt phẳng chứa đỉnh C , Có bờ là đường thẳng AB , kẻ đường thẳng AE vuông góc với AB và AE = AB . Trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC , kẻ đoạn thẳng AF vuông góc AC và AF= AC . Kẻ AD vuông góc BC ( D thuộc BC ) . EF cắt AD ở M . Chứng minh :
a, M là trung điểm của EF
b, FB vuông góc EC và FB = EC
cho tam giác ABc cân tại a. lấy D thuộc đoạn thẳng bc trên tia đối của tia cb lấy e sao cho ce = bd. Đường thẳng vuông góc bc kẻ từ d cắt ba tại k. Đường thẳng bc kẻ từ e cắt ac tại n. Mn giao bc tại i.
a) cm DM=EN
b) IM=IN,BC<MN
c) Gọi O là giao của đường phân giác góc A và đường thằng vuông góc MN tại I. CM tam giác BMO = CNO, O cố định
tam giác abc cân tại A. D thuộc đoạn thẳng BC, E thuộc tia đối của tia CB sao cho BD = CE. Các đường thăngr vuông góc Bc kẻ từ D và E cắt AB, AC ở M,N. I là gia của MN và BE
. a) Biết AB < BC. Chứng minh A> 60.
b) CM IM = IN.
c) CM đường thẳng vuông góc MN tại I luôn đi qua một điểm cố định khi D di động trên BC
Cho hình chữ nhật ABCD ( AB> CB) điểm E đối xứng với B qua A và F đối xứng với B qua C. Kẻ BH vuông góc với EF. Gọi P và Q là hình chiếu của H trên BE và BF. C/m PQ vuông góc với BD