Cho hình chóp S.ABC có đáy tam giác vuông cân tại C ,cạnh huyền bằng 3a, G là trọng tâm tam giác ABC, \(SG\perp\left(ABC\right)\)\(SB=\frac{a\sqrt{14}}{3}\). Tính thể tích khối chóp S.ABC và khoảng cách từ B đến mặt phẳng (SAC) theo a.
cho hinh chóp SABC có đáy ABC đều cạnh a,tam giác SAC cân tại S ,mp(SAC) vuông góc với đáy,góc giữa SB và mặt phẳng (ABC) bằng 60,M là trung điểm BC tính d(SM,AC)
cho hình chóp SABC có đáy ABC là tam giác vuông cân tại C, BC=a. Hình chiếu vuông góc của S lên mặt phẳng ABC là trung điểm H của cạnh AB, biết rằng SH=2a. Tính theo a thể tích khổi chóp và khoảng cách từ điểm B đế (MAC) với M là trung điểm SB
cho hình chóp sabcd có đáy là tam giác vuông cân tại a,ab=a√2,sa=sb=sc,góc giữa sa và mặt phẳng(abc )=60 độ.tính thể tích sabc và khoảng cách từ a đến mặt phẳng (sbc)
Cho hình chóp S.ABC có đáy tam giác ABC là tam giác vuông tại B, \(BA=3a,BC=4a\), mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết \(SB=2a\sqrt{3},\widehat{SBC}=30^o\).
Tính thể tích của khối chóp S>ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm của BC, mặt phẳng (SAC) tạo với đáy (ABC) một góc 600 . Tính thể tích hình chóp S.ABC và khoảng cách từ điểm I đến mặt phẳng (SAC) theo a, trong đó I là trung điểm SB.
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tm iacs ABC đều, hình chiếu vuông góc cúa đỉnh S trên mặt phẳng ABCD trùng với trọng tâm tam giác ABc. Góc giữa đường thẳng SD với mp ABCD bằng 30. Tính khoảng cách từ B đến mặt phẳng (SCD) theo a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt phẳng bên ABC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SA, BC
cho hình chóp SABC có đáy là tam giác đều cạnh 4a. M là trung điểm cạnh BC, H là trung điểm cạnh AM, SH vuông góc với (ABC), góc giữa ((SAB),(ABC)) = 60 độ. Tính V SABC và ((SAB),(SAC))