Bài 3: Khái niệm về thể tích của khối đa diện

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Kenny

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a tam giác SAC cân tại s và nằm trong mặt phẳng vuông góc với đáy SB tạo với mặt đáy một góc 30 độ M là trung điểm của BC Tính thể tích khối chóp S.ABM và khoảng cách giữa SB và AM ttheoa

Nguyễn Hoàng Việt
18 tháng 12 2016 lúc 22:04

a) Tính \(V_{S.ABM}\)

Tam giác ABC cân tại A , SBC cân tại S \(\Rightarrow AM\perp BC;SM\perp BC\) tại M

Vì mp(SBC) vuông góc với mặt đáy suy ra SM vuông góc với mặt đáy

Góc giữa SB và mặt đáy là góc SBM=300

\(\Rightarrow SM=BMtan.\widehat{SBM}=\frac{a}{2}.tan30^0=\frac{a}{2\sqrt{3}}\)

\(\Rightarrow V_{S.ABM}=\frac{1}{3}.SM.S_{ABM}=\frac{1}{3}.\frac{a}{2\sqrt{3}}.\frac{1}{2}.\frac{a}{2}.\frac{a\sqrt{3}}{2}=\frac{a^3}{48}\)

b) Tính k/c SB và AM

Kẻ MH vuông góc với SB tại H

Dễ dàng chứng minh MH là đoạn vuông góc chung giữa SB và AM

Vậy khảong cách giữa SB và AM bằng đoạn MH và bằng \(\frac{BM}{cos.\widehat{HBM}}=\frac{\frac{a}{2}}{cos30^0}=\frac{a}{\sqrt{3}}\)


Các câu hỏi tương tự
Trang Kenny
Xem chi tiết
Việt Trần Anh
Xem chi tiết
Kim Ngân
Xem chi tiết
Quỳnh Mai
Xem chi tiết
Tống Trang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
tâm đặng
Xem chi tiết
tâm đặng
Xem chi tiết
Thái Thùy Linh
Xem chi tiết