Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SA và \(\Delta\) là đường thẳng qua M song song với mặt phẳng (SBD) và cắt BC. Gọi I, J lần lượt là giao điểm của \(\Delta\) với BC và mặt phẳng (SCD). Tính tỉ số MI/MJ
1.Cho hình chóp SA..ABCD có đáy ABCD là hình bình hành. Gọi E là trung điểm của SC.Tìm giao tuyến của 2 mặt phẳng (ABE) và (SBD)
2.Cho tứ diện ABCD. Gọi I,J lần lượt là trung điểm của AC và BC, K thuộc BD sao cho KD<KB. Tìm giao tuyến của 2 mặt phẳng:
a,(IJK) và (ACD)
b,(IJK) và (ABD)
Cho hình chóp tứ giác lồi S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong tam giác SCD. a,Tìm giao điểm I của CD và mặt phẳng (ABM) b, Tìm giao điểm K của SD và mặt phẳng (ABM)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là điểm \(\overrightarrow{SO}=4\overrightarrow{SI}\). (a) là mặt phẳng đi qua AI và cắt SB, SC, SD thứ tự tại N, P, Q. Tính \(\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là điểm \(\overrightarrow{SO}=5\overrightarrow{SI}\), (a) là mặt phẳng đi qua AI và cắt SA, SB, SC, SD tại thứ tự M, N, P, Q Tính \(\dfrac{SA}{SM}+\dfrac{SB}{SN}+\dfrac{SC}{SP}+\dfrac{SD}{SQ}\)
BT1:Cho hình chóp S.ABC,gọi M,N laanf lượt là trung điểm SC,AB.
1,Xác định giao tuyến của 2 mặt phẳng (MAB) và (NSC)
2,Gọi I,J là 2 điểm lần lượt nằm trên 2 cạnh SA và SB.Xác định giao tuyến của 2 mặt phẳng (MAB) và (IJC)
BT2:Cho tứ diện ABCD,gọi I,J lần lượt là trung điểm của AC và SB,K\(\in\)BD sao cho KD<KB.Tìm giao tuyến của 2 mặt phẳng:
1,(IJK) và (ACD)
2,(IJK) và (ABD)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là điểm thuộc SA sao cho SM=3MA. a, Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b, Tìm giao tuyến H của MO và mặt phẳng (SCD)