Lời giải:
a) Vecto ngược hướng với một vecto là vecto song song nhưng không cùng hướng.
Từ đó dễ thấy \(\overrightarrow{ED}; \overrightarrow{BF}\) là hai vecto ngược hướng với \(\overrightarrow{EF}\)
b) Hai vecto bằng nhau nếu chúng cùng hướng và cùng độ dài.
Vì \(AB=DC\Rightarrow \frac{AB}{2}=\frac{DC}{2}\Rightarrow AM=CN\)
Mà $AM\parallel CN$ nên $AMCN$ là hình bình hành
Do đó: \(AN\parallel CM\) hay \(MF\parallel AE; EN\parallel FC\)
Khi đó: Áp dụng định lý Ta-let:
\(\frac{BF}{EF}=\frac{BM}{MA}=1\Rightarrow BF=EF\)
\(\frac{DE}{EF}=\frac{DN}{NC}=1\Rightarrow DE=EF\)
Vậy \(FB=EF=DE\Leftrightarrow |\overrightarrow{FB}|=|\overrightarrow{EF}|=|\overrightarrow{DE}|\)
Mà 3 vecto trên lại song song và cùng hướng nên \(\overrightarrow{DE}=\overrightarrow{EF}=\overrightarrow{FB}\)