Bài 6 :Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD
a) Tứ giác DEBF là hình gì?
b)C/m: AC,BD,EF đồng quy
c) Gọi giao điểm của AC với DE và BF thứ tự là M,N, chứng minh tứ giác EMFN là hình bình hành
d) Tính SEMFN khi AC = a, BC = b, AC ⊥ BD
Cho hình bình hành ABCD. Lấy E,F thuộc BD lấy điểm E và F sao cho DE= BF. a) CM AECF là hình bình hành
b) Gọi M, N lần lượt là giao điểm của AE, CF với DC và AB. Chứng tỏ AC, BD, MN đồng quy.
Cho hình bình hành ABCD có M , N lần lượt là trung điểm của AB và DC .
a) Chứng minh tứ giác ANCM là hình bình hành
b) Chứng minh 3 đường thẳng AC , BD , MN đồng quy
c) Gọi E , F lần lượt là giao điểm của AN với DM , CM với DN . Chứng minh tứ giác NEMF là hình bình hành
Cho hình bình hành ABCD. Gọi E là trung điểm của AD , F là trung điểm của BC a) Chứng minh BE = DF b) Chứng minh tứ giác EBFD là hình bình hành c) Chứng minh các đường thẳng EF , DB và AC đồng quy
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD.
Chứng minh: a) Các tứ giác MNPQ, INKQ là hình bình hành
b) Các đường thẳng MP, NQ, IK đồng quy
Cho hình bình hành ABCD có E và F lần lượt là trung điểm của AB và DC. Gọi M,N lần lượt là giao điểm của AC với DE và BF.
a) CM: Tứ giác DEBF là hình bình hành
b) CM: AM=MN=NC
c) MN cắt EF tại O. CM: B đối xứng với D qua O.
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.