Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. AM, AN lần lượt cắt BD tại E, F. Chứng minh BE = EF = FD
Cho hình bình hành ABCD, gọi E, F lần lượt là trung điểm của AB và CD.
a) Chứng minh AECF là hình bình hành
b) AF và CE cắt BD lần lượt tại M và N, chứng minh
Cho hình bình hành ABCD. Trên AD và BC lần lượt lấy E,F sao cho AE=CF. Trên AB và CD lần lượt lấy M,N sao cho BM=DN. Chứng minh rằng:
a,EMFN là hình bình hành
b,AC,BD,EF,MN đồng quy
Vẽ hình và giải,mọi người làm giúp mình với ạ,mình đang gấp,cảm ơn ạ
Cho hình bình hành ABCD. Lấy E,F thuộc BD lấy điểm E và F sao cho DE= BF. a) CM AECF là hình bình hành
b) Gọi M, N lần lượt là giao điểm của AE, CF với DC và AB. Chứng tỏ AC, BD, MN đồng quy.
Bài 6 :Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD
a) Tứ giác DEBF là hình gì?
b)C/m: AC,BD,EF đồng quy
c) Gọi giao điểm của AC với DE và BF thứ tự là M,N, chứng minh tứ giác EMFN là hình bình hành
d) Tính SEMFN khi AC = a, BC = b, AC ⊥ BD
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. AM, AN lần lượt cắt BD tại E, F. Chứng minh rằng:
a)E,F lần lượt là trọng tâm của các tam giác ABC và ACD
b)EB=EF=DF
Cho hình bình hành ABCD,gọi E là trung điểm AB,F là trung điểm của CD,chứng minh AECF là hình bình hành.gọi M là giao điểm của AF và BD.N là giao điểm CE và BD,chứng minh: +,DM+MN=NB +,chứng minh:AC,BD,EF đồng quy
Cho hình bình hành ABCD. Trên cạnh AB và CD lần lượt lấy các điểm E; F sao cho AE = CF.
a)Chứng minh: AF = EC.
b)Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh tứ giác EMFN là hình bình hành.
c) Ở phía ngoài của hình bình hành dựng 2 tam giác đều ADP và DCQ. Chứng minh rằng tam giác BPQ là tam giác đều.
Cho hình bình hành ABCD có AB = 2DC, E;F theo thứ tự là trung điểm của cạnh AB, CD.
a) CM: Tứ giác DBEF là hình bình hành
b) CM: Tứ giác AEFD là hình thoi
c) Gọi M là giao điểm của DE và AF, N là giao điểm của EC và BF. Tứ giác MENF là hình gì? Vì sao?
d) Hình bình hành ABCD có thêm điều kiện gì thì tứ giác MENF là hình vuông.