Cho hình bình hành ABCD , gọi M là trung điểm BC, điểm I thỏa \(\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AM}\).Chứng minh rằng \(\overrightarrow{BI}=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Tam giác ABC có G là trọng tâm. M,N lần lượt là trung điểm của đoạn AB,BC. Lấy I,J thỏa mãn: \(\left\{{}\begin{matrix}2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\\2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\end{matrix}\right.\)
a, chứng minh M,N,J thẳng hàng
b,chứng minh J là trung điểm của IB
c,Gọi E nằm trên AB thỏa mãn \(\overrightarrow{AE}=k\overrightarrow{AB}\left(k\ne1\right)\).Xác định k để C,E,J thẳng hàng
(làm giùm mình câu c) thank nhiều
Cho tam giác ABC. Trên các cạnh AB, AC lần lượt lấy các điểm E, F sao cho EB=2EA, 2AF=3FC. Gọi G là điểm sao cho \(\overrightarrow{BC}\)=2\(\overrightarrow{CG}\), M, N lần lượt là trung điểm EF và BC.
a/CMR: \(\overrightarrow{AM}\)=\(\dfrac{1}{6}\)\(\overrightarrow{AB}\)+\(\dfrac{3}{10}\)\(\overrightarrow{AC}\) và \(\overrightarrow{MN}\)= \(\dfrac{1}{3}\)\(\overrightarrow{AB}\)+\(\dfrac{1}{5}\)\(\overrightarrow{AC}\)
b/ Phân tích vecto \(\overrightarrow{EG}\), \(\overrightarrow{FG}\) theo 2 vecto \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
c/Chứng minh rằng 3 điểm E,F,G thẳng hàng.
Cho tam giác ABC. Trên hai cạnh AB, AC lấy 2 điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB}\), \(\overrightarrow{CE}=3\overrightarrow{EA}\). Gọi M là trung điểm DE và I là trung điểm BC. CMR:
a. \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)
b. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
Cho tam giác ABC
a) Tìm điểm K sao cho \(\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{CB}\)
b) Tìm điểm M sao cho \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\)
m.n giúp mk lm bài này vs, mk hơi ngu về lĩnh vực toán hình ak..........
Cho\(\overrightarrow{a}\) khác \(\overrightarrow{0}\) và điểm A. Dựng điểm M sao cho \(\overrightarrow{AM}=\overrightarrow{a}+\overrightarrow{a}+\overrightarrow{a}\). Dựng điểm N sao cho \(\overrightarrow{AN}=-\overrightarrow{a}-\overrightarrow{a}\). Nêu nhận xét về hướng và độ lớn của các vecto \(\overrightarrow{AM},\overrightarrow{AN}\) so với \(\overrightarrow{a}\).
m.n hãy giúp mk vs mk cần cái hình nx. ko có chắc mk chết vào ngày mai lun. m.n hảy lm giúp mk nhé. cảm ơn m.n rất nhiều...
Cho M, N,I là trung điểm AB,CD,MN
Chứng minh: 1) \(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\)
2)\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
3)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=4\overrightarrow{OI}\forall O\)
4) \(\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{NA}+\overrightarrow{NB}=\overrightarrow{0}\)
5) \(\overrightarrow{AD}-\overrightarrow{CD}\Leftrightarrow M\equiv N\)
6) \(\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=4\overrightarrow{MN}\)
cho tam giác ABC lấy các điểm M,N,P sao cho \(\overrightarrow{MB}-2\overrightarrow{MC}=\overrightarrow{0},\overrightarrow{NA}+\overrightarrow{2NC}=\overrightarrow{0},\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{0}\)
a)hãy biểu thị \(\overrightarrow{PM},\overrightarrow{PN}\)theo \(\overrightarrow{AB},\overrightarrow{AC}\)
b)chứng minh M,N,P thẳng hàng
Tìm giá trị của m sao cho \(\overrightarrow{a}=m\overrightarrow{b}\) trong các trường hợp sau :
a) \(\overrightarrow{a}=\overrightarrow{b}\ne\overrightarrow{0}\)
b) \(\overrightarrow{a}=-\overrightarrow{b};\overrightarrow{a}\ne\overrightarrow{0}\)
c) \(\overrightarrow{a},\overrightarrow{b}\) cùng hướng và \(\left|\overrightarrow{a}\right|=20;\left|\overrightarrow{b}\right|=5\)
d) \(\overrightarrow{a},\overrightarrow{b}\) ngược hướng và \(\left|\overrightarrow{a}\right|=5;\left|\overrightarrow{b}\right|=15\)
e) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}\ne\overrightarrow{0}\)
g) \(\overrightarrow{a}\ne\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\)
h) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\)