cho hệ pt:
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\left(1\right),mlàthamsố\)
a) giải hệ (1) với m=2( câu này k cần lm)
b) Tìm tất cả các giá trị của m để hệ (1) có nghiệm duy nhất.
c) tìm giá trị nhỏ nhất của biểu thức A= \(x^2+y^2\), trong đó (x;y) là nghiệm duy nhất của hệ (1)
cho x,y là số thực . Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)