Kẻ \(MH\perp CD\Rightarrow AMHD\) là hcn
\(\Rightarrow MH=AD=a\)
\(V_{SDCM}=\dfrac{1}{3}SA.S_{MCD}=\dfrac{1}{3}SA.\dfrac{1}{2}MH.CD=\dfrac{1}{6}.a.a.2a=\dfrac{a^3}{3}\)
b.
Trong tam giác vuông DAM, kẻ \(AE\perp DM\Rightarrow DM\perp\left(SAE\right)\)
\(\Rightarrow\widehat{SEA}\) là góc giữa (SDM) và đáy hay \(\widehat{SEA}=60^0\)
\(\Rightarrow AE=\dfrac{SA}{tan60^0}=\dfrac{a\sqrt{3}}{3}\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AE^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AM=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow V_{SADM}=\dfrac{1}{3}AM.\dfrac{1}{2}SA.AD=\dfrac{a^3\sqrt{2}}{12}\)
Kẻ \(AF\perp SE\Rightarrow AF\perp\left(SDM\right)\Rightarrow AF=d\left(A;\left(SDM\right)\right)\)
\(\dfrac{1}{AF^2}=\dfrac{1}{SA^2}+\dfrac{1}{AE^2}\Rightarrow AF=\dfrac{a}{2}\)