Cho ΔABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow{BH}=\dfrac{1}{3}\overrightarrow{HC}\). Điểm M di động nằm trên BC sao cho \(\overrightarrow{BM}=x\overrightarrow{BC}\). Tìm x sao cho độ dài vecto \(\overrightarrow{MA}+\overrightarrow{GC}\) đạt GTNN
Cho tam giác ABC đường trung tuyến AD. Gọi I là trung điểm AD, điểm K nằm trên cạnh AC sao cho \(\overrightarrow{KC}=-2\overrightarrow{KA}\)
a) Hãy phân tích vectơ BI, BK theo vectơ BA, BC
b) Chứng minh B,I,K thẳng hàng
c) Nêu các xác định điểm M sao cho \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)
Nhanh nha gấp lắm
bài 1: Cho hình bình hành ABCD, gọi G là trọng tâm tam giác BCD
a, Cho 2 điểm I, J sao cho \(\overrightarrow{IB}=\overrightarrow{2IC};\overrightarrow{3JB}+\overrightarrow{2JD}=0\)
Biểu thị \(\overrightarrow{IJ}\)theo \(\overrightarrow{BC;}\overrightarrow{BD}\)
b, Chứng minh ba điểm I; J; G thẳng hàng
bài 2: Trong mặt phẳng Oxy cho A(-1;-1); B(2;5); C(6;2). M là điểm thuộc AB sao cho MA = 2MB; I là trung điểm BC
TÌm điểm trên đường thẳng AB cách đều 2 trục tọa độ
Cho hình bình hành ABCD , 2 điểm E ; F thỏa mãn 2 \(\overrightarrow{CE}+\overrightarrow{EB}=\overrightarrow{0},3\overrightarrow{DF}+\overrightarrow{BD}=\overrightarrow{0}\)
1. Chứng minh A ; E ; F thẳng hàng
2. Tìm M sao cho \(2\overrightarrow{AM}-3\overrightarrow{AF}=\overrightarrow{0}\)
Cho \(\Delta\) ABC có trọng tâm G . H là điểm đối xứng của B qua G .
a; cm : \(\overrightarrow{AH}\)= \(\frac{2}{3}\overrightarrow{AC}\) - \(\frac{1}{3}\overrightarrow{AB}\)
b:; \(\overrightarrow{CH}\)= \(-\frac{1}{3}\) (\(\overrightarrow{AC}\) + \(\overrightarrow{AB}\) )
c; M là trung điểm BC , cm: \(\overrightarrow{MH}\) = \(\frac{1}{6}\overrightarrow{AC}\) - \(\frac{5}{3}\overrightarrow{AC}\)
Cho tam giác ABC trên các đường thẳng BC AC AB lan luot lay cac diem M N P sao \(\overrightarrow{MB}=\overrightarrow{3MC}\)
\(\overrightarrow{NA}=\overrightarrow{3CN}\) , \(\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{0}\)
Cm \(\overrightarrow{PM},\overrightarrow{PN}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
Cm 3 điểm M N P thẳng hàng
Cho M, N,I là trung điểm AB,CD,MN
Chứng minh: 1) \(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\)
2)\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
3)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=4\overrightarrow{OI}\forall O\)
4) \(\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{NA}+\overrightarrow{NB}=\overrightarrow{0}\)
5) \(\overrightarrow{AD}-\overrightarrow{CD}\Leftrightarrow M\equiv N\)
6) \(\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=4\overrightarrow{MN}\)
Cho tam giác ABC. Gọi M là trung điểm của BC. Trên cạnh AB,AC lần lượt lấy các điểm P,Q sao cho \(\overrightarrow{AP}=\dfrac{3}{4}\overrightarrow{AB},\overrightarrow{AQ}=\dfrac{2}{3}\overrightarrow{AC}\). Gọi N là giao điểm của AM và PQ. Đặt \(\overrightarrow{NP}=k\overrightarrow{NQ}\).Tìm k
Trên đường thẳng chứa cạnh BC của tam giác ABC lấy một điểm M sao cho \(\overrightarrow{MB}=3\overrightarrow{MC}\). Hãy phân tích vectơ \(\overrightarrow{AM}\) theo hai vectơ \(\overrightarrow{u}=\overrightarrow{AB}\) và \(\overrightarrow{v}=\overrightarrow{AC}\) ?