b) Ta có \(y'=4x^3-4x;y\left(-2\right)=8;y'\left(-2\right)=-24\)
Phương trình tiếp tuyến phải tìm là :
\(y-y\left(-2\right)=y'\left(-1\right)\left(x+2\right)\)
\(\Leftrightarrow y-8=-24\left(x+2\right)\Leftrightarrow y=-24x-10\)
b) Ta có \(y'=4x^3-4x;y\left(-2\right)=8;y'\left(-2\right)=-24\)
Phương trình tiếp tuyến phải tìm là :
\(y-y\left(-2\right)=y'\left(-1\right)\left(x+2\right)\)
\(\Leftrightarrow y-8=-24\left(x+2\right)\Leftrightarrow y=-24x-10\)
Cho hàm số \(y=-x^3+3x-2\) (C)
a) Khảo sát và vẽ đồ thị hàm số
b) Tìm m để phương trình: \(x^3-3x+2m+1=0\) có 3 nghiệm phân biệt
c) Viết phương trình tiếp tuyến với (C) tại điểm có hoành độ \(x=0\)
Cho hàm số :
\(y=\dfrac{2x+1}{x-2}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của đồ thị (C), biết hệ số góc của tiếp tuyến bằng -5
cho hàm số \(y=-x^4+2x^2+3\) (c)
a.khảo sát và vẽ đồ thị hàm số (c)
b.tìm m để phương trình \(x^4-2x^2+m=0\) có 4 nghiệm phân biệt
c.viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x=2.
Cho hàm số \(y=\dfrac{1}{4}x^4+\dfrac{1}{2}x^2+m\)
a) Với giá trị nào của tham số \(m\), đồ thị của hàm số đi qua điểm (-1 ; 1)
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi \(m=1\)
c) Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng \(\dfrac{7}{4}\)
Cho hàm số :
\(y=\dfrac{x^4}{4}-2x^2-\dfrac{9}{4}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của (C) tại các giao điểm của nó với trục \(Ox\)
c) Biện luận theo k số giao điểm của (C) với đồ thị (P) của hàm số
\(y=k-2x^2\)
Cho hàm số \(y=2x^4-4x^2\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ?
b) Với giá trị nào của m, phương trình \(x^2\left|x^2-2\right|=m\) có đúng 6 nghiệm thực phân biệt ?
Bài 1 a) Khảo sát và vẽ đồ thị hàm số y=x³-2x²+x (C) b) từ đồ thị (C) suy ra đồ thị các hàm số sau: y=|x³-2x²+x|, y=|x|³ -2x²+|x| Bài 2: Khảo sát và vẽ đồ thị hàm số y=x⁴-2x²-3 (C). Từ đồ thị (C) suy ra đồ thị hàm số y=|y=x⁴-2x²-3|
Cho hàm số :
\(y=\dfrac{2x+1}{2x-1}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Xác định tọa độ giao điểm của đồ thị (C) với đường thẳng \(y=x+2\)
Cho hàm số \(y=\dfrac{1}{4}x^3-\dfrac{3}{2}x^2+5\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho
b) Tìm các giá trị của tham số m để phương trình \(x^3-6x^2+m=0\) có 3 nghiệm phân biệt