Cho hai hàm số \(y=2x\) và \(y=-2x\)
a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của hai hàm số đã cho
b) Trong hai hàm số đã cho, hàm số nào đồng biến ? Hàm số nào nghịch biến ? Vì sao ?
Cho hàm số y=(m+1)x+n với m khác 1
a) Với m=-√2 thì hàm số đồng biến hay nghịch biến
b) Với giá trị của m,n thì độ thị cắt Oy tại điểm có tung độ y=2 qua A(1;5)
7. Cho hàm số \(y=f\left(x\right)=3x\)
Cho x 2 giá trị bất kì x1, x2 sao cho x1 < x2
Hãy CM \(f\left(x_1\right)< f\left(x_2\right)\) rồi rút ra kết luận hàm số đã cho đồng biến trên R
cho hàm số y=f(x)=2x. Tính f(-2), f(0), f(1) và vẽ đồ thị hàm số
Cho hàm số \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in\mathbb{R}\)
Chứng minh rằng hàm số đồng biến trên \(\mathbb{R}\)
Cho hàm số y=f(x)=x mũ 2. Xét tính biến thiên của hàm số trong khoảng từ (0;1) và 1>x1>x2>0
a, Cho hàm số y=f(x). Tính f(0);f(-1/3);f(5/2);f(a+b)
b, Cho hàm số y=g(x). Tính g(1);g(-1/2);g(-2);g(a-b)
Cho hàm số \(y=f\left(x\right)=4-\dfrac{2}{5}x\) với \(x\in\mathbb{R}\)
Chứng minh rằng hàm số đã cho nghịch biến trên \(\mathbb{R}\)
Cho hàm số y=f(x)=2x-3. X lấy giá trị thực bất kì x1, x2 sao cho x1 < x2. Chứng tỏ f(x1) < f(x2). Kết luận về tính biến thiên của hàm số