\(y'=-\dfrac{2x-2}{\left(x^2-2x+5\right)^2}=\dfrac{2-2x}{\left(x^2-2x+5\right)^2}\)
\(y'\ge0\Leftrightarrow\dfrac{2-2x}{\left(x^2-2x+5\right)^2}\ge0\Rightarrow x\le1\)
Có \(1-\left(-8\right)+1=10\) số nguyên
\(y'=-\dfrac{2x-2}{\left(x^2-2x+5\right)^2}=\dfrac{2-2x}{\left(x^2-2x+5\right)^2}\)
\(y'\ge0\Leftrightarrow\dfrac{2-2x}{\left(x^2-2x+5\right)^2}\ge0\Rightarrow x\le1\)
Có \(1-\left(-8\right)+1=10\) số nguyên
cho hàm số \(y=\dfrac{x^2+2x-3}{x+2}\). có bao nhiêu giá trị m để \(y'\left(-1\right)=4\)
1. Đạo hàm của hàm số y= \(\left(x^3-5\right).\sqrt{x}\) bằng bao nhiêu?
2. Đạo hàm của hàm số y= \(\dfrac{1}{2}x^6-\dfrac{3}{x}+2\sqrt{x}\) là?
3. Hàm số y= \(2x+1+\dfrac{2}{x-2}\) có đạo hàm bằng?
Cho hàm số \(y=\dfrac{1}{2x^2+x-1}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2019}}{\left(2x-1\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}+\dfrac{2}{\left(2x-1\right)^{2020}}\right)\)
cho hàm số \(f\left(x\right)=2x^2+1\). đặt \(y=f\left(x\right)-f'\left(x\right)\). tìm x để \(y'\left(x\right)=0\)?
Cho hàm số \(y=\dfrac{1}{3x^2-x-2}\). Hỏi đạo hàm cấp 2019 của hàm số bằng biểu thức nào sau đây?
A. \(\dfrac{2019!}{5}\left(\dfrac{1}{\left(x-1\right)^{2020}}-\dfrac{3}{\left(3x+2\right)^{2020}}\right)\)
B. \(\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
C. \(\dfrac{2019!}{5}\left(\dfrac{3}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
D. \(\dfrac{2019!}{5}\left(\dfrac{1}{\left(x-1\right)^{2020}}-\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}\right)\)
Cho hàm số \(y=\dfrac{2}{3}x^3-\left(m+1\right)x^2+3\left(m+1\right)x+2\)
Tìm m để phương trình y'=0 thỏa mãn
a, có 2 nghiệm
b, có 2 nghiệm trái dấu
tìm tất cả các tham số m để \(y'\ge0\) voi mọi x thuoc R
a) \(y=mx^3-\left(m+1\right)x^2+3mx-1\)
b) \(y=\dfrac{mx^3}{3}-mx^2+\left(2m-1\right)x-1\)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên R, thỏa mãn: \(2f\left(2x\right)+f\left(1-2x\right)=12x^2\). Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x=1\) là:
A. \(y=4x-2\)
B. \(y=2x+2\)
C. \(y=2x-6\)
D. \(y=4x-6\)
cho hàm số \(y=\dfrac{3x^2+2x+1}{x-2}\) có đạo hàm là biểu thức có dạng \(\dfrac{ax^2+bx+c}{\left(2x-4\right)^2}\). tinh \(a^2-b^2+c^2\)