Cho hàm số :
\(y=-x^4-x^2+6\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{6}x-1\)
Cho hàm số :
\(y=\dfrac{3\left(x+1\right)}{x-2}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
b) Viết phương trình các đường thẳng đi qua \(O\left(0;0\right)\) và tiếp xúc với (C)
c) Tìm tất cả các điểm trên (C) có tọa độ là các số nguyên
Cho hàm số :
\(y=x^3-3x^2\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho
b) Tìm các giá trị của tham số m để phương trình \(x^3-3x^2-m=0\) có 3 nghiệm phân biệt
Cho hàm số :
\(y=f\left(x\right)=x^4-2mx^2+m^3-m^2\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1
b) Xác định m để đồ thị \(\left(C_m\right)\) của hàm số đã cho tiếp xúc với trục hoành tại hai điểm phân biệt
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số :
\(y=\dfrac{x+2}{x-3}\)
b) Chứng minh rằng giao điểm I của hai tiệm cận của (C) là tâm đối xứng của (C)
c) Tìm điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang
Cho hàm số :
\(y=\dfrac{\left(a-1\right)x^3}{3}+ax^2+\left(3a-2\right)x\)
a) Xác định a để hàm số luôn luôn đồng biến
b) Xác định a để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt
c) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với \(a=\dfrac{3}{2}\)
Từ đó suy ra đồ thị của hàm số :
\(y=\left|\dfrac{x^3}{6}+\dfrac{3x^2}{2}+\dfrac{5x}{2}\right|\)
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=-mx\) cắt đồ thị của hàm số \(y=x^3-3x^2-m+2\) tại 3 điểm phân biệt A, B, C sao cho AB=BC
A. \(m\in\left(-\infty;3\right)\)
B. \(m\in\left(-\infty;-1\right)\)
C. \(m\in\left(-\infty;+\infty\right)\)
D. \(m\in\left(1;+\infty\right)\)
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=mx-m+1\) cắt đồ thị của hàm số \(y=x^3-3x^2+x+2\) tại 3 điểm A, B, C phân biệt sao cho AB=BC
A. \(m\in\left(-\infty;0\right)\cup[4;+\infty)\)
B. \(m\in R\)
C. \(m\in\left(-\dfrac{5}{4};+\infty\right)\)
D. \(m\in\left(-2;+\infty\right)\)
Cho hàm số :
\(y=-\left(m^2+5m\right)x^3+6mx^2+6x-5\)
a) Xác định m để hàm số đơn điệu trên \(\mathbb{R}\). Khi đó hàm số đồng biến hay nghịch biến ? Tại sao ?
b) Với giá trị nào của m thì hàm số đạt cực đại tại \(x=1\) ?