Bài 1: Sự đồng biến và nghịch biến của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thụy Nhật Trúc

Cho hàm số \(y=-\frac{1}{3}x^3+mx^2+\left(m-2\right)x-\frac{1}{3}\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) đồng biến trên đoạn có độ dài bằng 4

 
Nguyễn Bình Nguyên
19 tháng 4 2016 lúc 11:40

Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)

Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\)  và thỏa mãn :

\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)

                    \(\Leftrightarrow m=2\) hoặc \(m=-3\)

Kết luận  \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4

 

 


Các câu hỏi tương tự
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Hồ Kim Trang
Xem chi tiết
Phạm Nguyễn Thanh Duy
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Đỗ Đức Huy
Xem chi tiết
Đoàn Thị Hồng Vân
Xem chi tiết
Tâm Cao
Xem chi tiết
Tâm Cao
Xem chi tiết
Ngô Chí Thành
Xem chi tiết