\(f'\left(x\right)=x^2+2\left(m-2\right)x+9\)
Để \(f'\left(x\right)\ge0\) \(\forall x\Leftrightarrow\Delta'\le0\Leftrightarrow\left(m-2\right)^2-9\le0\)
\(\Leftrightarrow-3\le m-2\le3\Leftrightarrow-1\le m\le5\)
\(f'\left(x\right)=x^2+2\left(m-2\right)x+9\)
Để \(f'\left(x\right)\ge0\) \(\forall x\Leftrightarrow\Delta'\le0\Leftrightarrow\left(m-2\right)^2-9\le0\)
\(\Leftrightarrow-3\le m-2\le3\Leftrightarrow-1\le m\le5\)
Tìm a để các hàm số sau liên tục tại x0
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{1-x}+\sqrt{1+x}}{x}khix< 0\\a+\dfrac{4-x}{x+2}khi\ge0\end{matrix}\right.\)tại x0 = 0
1. Tìm tập xác định của các hàm số sau:
a) \(y=\frac{s\text{in3}x+cos2x}{\sqrt{2}sinx-\sqrt{2}cosx}\)
b) \(y=tan\left(3x-\frac{\pi}{3}\right)\)
2. Giải phương trình lượng giác
a) \(sinx+s\text{in2}x+s\text{in3}x=0\)
b) \(2sin\left(2x+\frac{\pi}{4}\right)=1;\left(0< x< \pi\right)\)
3. a) Xét tính liên tục của hàm số:
\(f\left(x\right)=\left\{{}\begin{matrix}\frac{x-1}{\sqrt{2-x}-1}khix< 1\\-2x....khix>1\end{matrix}\right.t\text{ại}x=1\)
b) Tìm giá trị của thamm số m để hàm số:
\(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^3-x^2+2x-2}{x-1}khix\ne1\\3x+m......khix=1\end{matrix}\right.li\text{ên}t\text{ục}t\text{ại}x=1\)
Bài 1:Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) ,\(g\left(x\right)=\sqrt{f\left(x\right)+6}-2\sqrt[3]{f\left(x\right)-2}\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt{x}-1\right)g\left(x\right)}\)
Bài 2: Cho \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2ax^2+30}-bx-5}{x^3-3x+2}=c\left(a;b;c\in R\right)\)
Tính giá trị \(P=a^2+b^2+36c\)
Bài 3: Cho a;b là các số nguyên dương. Biết \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+ax}+\sqrt[3]{8x^3+2bx^2+3}\right)=\dfrac{7}{3}\)
Tinh P= a+2b
Bài 4:Cho a,b,c thuộc R với a>0 thỏa mãn
\(c^2+a=2\) và \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{ax^2+bx}-cx\right)=-3\)
Tính P= a+b+5c
Bài 5:
Mấy câu này khó nên mong các bạn giúp mình với. Mai mình phải kiểm tra rồi
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}x+1\left(x\le1\right)\\2\left(x>1\right)\end{matrix}\right.\)
Hàm f(x) có phải là hàm đơn điệu không ?
cho hàm số f(x)=2x2+x-3
tìm \(\lim\limits_{x\rightarrow+\infty}\)\(\dfrac{\sqrt{f\left(x\right)}+\sqrt{f\left(4x\right)}+\sqrt{\left(4^2x\right)}+...+\sqrt{f\left(4^{2018}x\right)}}{\sqrt{f\left(x\right)}+\sqrt{f\left(2x\right)}+\sqrt{\left(2^2x\right)}+...+\sqrt{f\left(2^{2018}x\right)}}\)=\(\dfrac{a^{2019}+b}{c}\) với a,b,c là ba số nguyên dương và b<2019.Tính S=a+b-c
Bài 1: Với giá trị nào của m thì hàm số liên tục trên tập xác định của nó
\(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2-3x+2}{\left|x-1\right|}khix\ne1\\m-1khix=1\end{matrix}\right.\)
Bài 2:a) chứng minh phương trình (1-m2)x5-3x-1=0 luôn có nghiệm với mọi m.
b) cho 3a-7b+19c=0 chứng minh phương trinh2 ax2+bx+c=0 luôn có nghiệm.
Cho hàm số \(f\left(x\right)=2x-3\) và dãy số \(\left(x_n\right)\) , lim \(x_n=1\) . Tính \(limf\left(x_n\right)\)
Cho hàm số \(f\left(x\right)=2x-3\) và dãy số \(\left(x_n\right)\) , lim \(x_n=1\) . Tính \(limf\left(x_n\right)\)