Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) sao cho \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\)
a) Dựng \(\overrightarrow{OA}=\overrightarrow{a};\overrightarrow{OB}=\overrightarrow{b}\). Chứng minh O là trung điểm của AB
b) Dựng \(\overrightarrow{OA}=\overrightarrow{a};\overrightarrow{AB}=\overrightarrow{b}\). Chứng minh \(O\equiv B\)
Do \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên hai véc tơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) đối nhau.
a)
\(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên O là trung điểm của AB.
b) \(\overrightarrow{OB}=\overrightarrow{OA}+\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{0}\) nên \(O\equiv B\).