Cho hai véc tơ \(\overrightarrow{a};\overrightarrow{b}\).
Cho hai véc tơ \(\overrightarrow{a};\overrightarrow{b}\).
Cho lục giác đều ABCDEF tâm O có cạnh a
a) Phân tích vectơ \(\overrightarrow{AD}\) theo hai vectơ \(\overrightarrow{AB}\) và \(\overrightarrow{AF}\)
b) Tính độ dài của vectơ \(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}\) theo a
Cho hai vecto a,b không cùng phương. Tìm số thực x để \(\overrightarrow{c}=\left(x-2\right)\overrightarrow{a}+\overrightarrow{b}cungphuongvoi\overrightarrow{d}=\left(2x+1\right)\overrightarrow{a}-\overrightarrow{b}\)
Tìm giá trị của m sao cho \(\overrightarrow{a}=m\overrightarrow{b}\) trong các trường hợp sau :
a) \(\overrightarrow{a}=\overrightarrow{b}\ne\overrightarrow{0}\)
b) \(\overrightarrow{a}=-\overrightarrow{b};\overrightarrow{a}\ne\overrightarrow{0}\)
c) \(\overrightarrow{a},\overrightarrow{b}\) cùng hướng và \(\left|\overrightarrow{a}\right|=20;\left|\overrightarrow{b}\right|=5\)
d) \(\overrightarrow{a},\overrightarrow{b}\) ngược hướng và \(\left|\overrightarrow{a}\right|=5;\left|\overrightarrow{b}\right|=15\)
e) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}\ne\overrightarrow{0}\)
g) \(\overrightarrow{a}\ne\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\)
h) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\)
Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích các vectơ \(\overrightarrow{AB,}\overrightarrow{BC},\overrightarrow{CA}\) theo hai vectơ \(\overrightarrow{u}=\overrightarrow{AK};\overrightarrow{v}=\overrightarrow{BM}\) ?
Cho tam giác ABC đường trung tuyến AD. Gọi I là trung điểm AD, điểm K nằm trên cạnh AC sao cho \(\overrightarrow{KC}=-2\overrightarrow{KA}\)
a) Hãy phân tích vectơ BI, BK theo vectơ BA, BC
b) Chứng minh B,I,K thẳng hàng
c) Nêu các xác định điểm M sao cho \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)
Nhanh nha gấp lắm
Cho tam giác ABC. Điểm I trên cạnh AC sao cho \(CI=\dfrac{1}{4}CA\). J là điểm mà \(\overrightarrow{BJ}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{3}{2}\overrightarrow{AB}\)
a) Chứng minh \(\overrightarrow{BI}=\dfrac{3}{4}\overrightarrow{AC}-\overrightarrow{AB}\)
b) Chứng minh B, I, J thẳng hàng
c) Hãy dựng điểm J thỏa mãn điều kiện đề bài
HELP ME PLEASE, I NEED IT NƠ, luv u
Cho hình bình hành ABCD. Đặt \(\overrightarrow{AB}=\overrightarrow{a}\); \(\overrightarrow{AD}=\overrightarrow{b}\)
Hãy tính các vecto sau theo \(\overrightarrow{a}\) và \(\overrightarrow{b}\)
a, \(\overrightarrow{DI}\) với I là trung điểm BC
b, \(\overrightarrow{AG}\) với G là trọng tâm \(\Delta CDI\)
Cho tam giác ABC. Trên hai cạnh AB, AC lấy 2 điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB}\), \(\overrightarrow{CE}=3\overrightarrow{EA}\). Gọi M là trung điểm DE và I là trung điểm BC. CMR:
a. \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)
b. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
Cho \(\overrightarrow{a}\)và \(\overrightarrow{b}\)không cùng phương thảo mãn \(m\overrightarrow{a}+n\overrightarrow{b}=\overrightarrow{0}\)Chứng minh rằng \(\begin{cases}m=0\\n=0\end{cases}\)